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Figure S1. Relationship between applied shear stress, effective normal stress and shear strain 
rate. Below the plastic yield strength (dashed line) the granular material crept with a non-
linear viscous rheology. Stressed above the plastic yield limit the material failed to increase its 
strength and the upper boundary accelerated, limited by the inertia of its components. The 
stress exponent during creep fitted to values between 6 and 11, dependent on the material 
consolidation state. 
 
 

 

Figure S2. Detailed surface displacement records at Whillans Ice Plain, West Antarctica. The 
ice flow displays multimodal behavior of stick, creep, and slip, strongly correlated to tidal state. 
Basal friction is primarily provided at a sticky spot, where slight creep precedes the slip. 32 km 
upstream of the sticky spot the inter-slip phase displacement is enhanced by horizontal 
compression of the ice. 
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Parameter Symbol Value 

Grain count 𝑁! 9,600 

Grain radius 𝑟 0.01 m 

Grain contact normal stiffness 𝑘! 1.16 × 109 N/m 

Grain contact tangential stiffness 𝑘! 1.16 × 109 N/m 

Grain friction coefficient 𝜇 0.5 

Grain density 𝜌 2600 kg/m3 

Fluid density 𝜌! 1000 kg/m3 

Fluid dynamic viscosity 𝜇! 1.040 × 10–7 Pa s 

Fluid adiabatic compressibility 𝛽! 1.426 × 10–8 Pa–1 

Hydraulic permeability prefactor 𝑘! 3.5 × 10–13 m2 

Mean prescribed effective normal stress 𝑁 80 kPa 

Normal stress modulation amplitude 𝐴! 70 kPa 

Normal stress modulation frequency 𝑓! 0.2 Hz 

Prescribed shear stress 𝜏 10 kPa 

Top wall mass 𝑚! 280 kg 

Gravitational acceleration vector 𝒈 [0, 0, –9.81] m/s2 

Spatial domain dimensions 𝑳 [0.52, 0.26, 0.55] m 

Numerical time step length Δ𝑡 2.14 × 10–7 s 

Simulation length (scaled time) 𝑡!"# 45 s 

Table S1. Applied geometric and physical simulation parameters and their values.  All time-
dependent parameters are listed in scaled model time and can be converted to their real-time 
equivalent values by correcting with a time-scaling factor of 5.787 × 10−5 (see SI sections 
“Scaling of model time: 1. Granular model” and “Scaling of model time: 2. Fluid model”). 
However, we do not scale gravity to model time as it would change the depth dependence of 
lithostatic pressure. The velocity results in Figure 3a+b and 5 are scaled to real time. 
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Text S1. Supplementary Methods 
The grain and water mixture is simulated using two separate but coupled numerical models. 
The grains in the granular phase are simulated individually, and are interacting with each 
other and the pore-water fluid, as well as with the model boundaries. The fluid phase is 
treated as a viscoelastic continuum and flows according to Darcy’s law with evolving 
permeability. 

The experimental setup is a rectangular volume where the lateral boundaries are 
periodic. Grains that exit one of the periodic boundaries immediately reappear on the 
opposite side. Additionally, grain pairs can be in mechanical contact although placed at 
opposite boundaries. The periodic boundaries result in a horizontally pseudo-infinite 
geometry (Figure SM1). The granular assemblage is initially pre-consolidated and in a pre-
failure state. The uppermost row of grains impose a time-variable downwards stress and a 
constant shear stress along the positive direction of the x-axis. The fluid pressure at the top 
boundary is varied to induce periodic change in effective normal stress. The horizontal shear 
velocity at the top boundary is monitored to 16 significant decimal digit precision as the stress 
and fluid pressures evolve. 

 

Figure S3. Experimental setup and deformation in the shear experiments. 
 
The novel computational approach allows for monitoring stress and displacements at a 

precision far exceeding the resolution of sensors in laboratory devices. Additionally, the use of 
periodic lateral boundaries removes the effects of wall friction in most laboratory ring-shear 
devices and strain thinning in direct-shear boxes. The numerical model produces true granular 
mechanics without a priori assumptions of macroscopic constitutive behavior (i.e. viscous, 
plastic, etc.). The purpose-built open-source modeling framework allows for experiment 
reproducibility, and all model source code, input files, and post-processing scripts are 
available online under a free software license1. 

The granular model uses an explicit integration scheme to solve the full kinematic 
behavior in the linear and angular degrees of motion, from seismic waves on the short time 
scale to grain displacement and rearrangement on longer time scales. This complete approach 
causes strict requirements to the length of the computational time steps. In order to simulate 

                                                
1 https://github.com/anders-dc/sphere 
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a large number of grains with realistic interaction, we implemented the granular and fluid 
algorithms in CUDA C [NVIDIA, 2015], which accelerates the computations using NVIDIA 
general-purpose graphics processing units (GPUs). 

 
Granular model 
The grains are handled individually using the discrete element method [Cundall and Strack, 
1979, Hindrichsen and Wolf, 2004, Luding 2008, Kruggel-Emden et al., 2008, Radjaï and Dubois, 
2011, Damsgaard et al., 2013] (DEM). The grain shapes are idealized as spheres interacting 
using a linear elastic-frictional contact rheology. The surface forces resulting from the 
interaction between a pair of grains with indexes 𝑖 and 𝑗 are found as: 

𝒇!
!,! =  −𝑘!𝜹!

!,!  

𝒇!
!,! =  −min 𝑘!||𝜹!

!,!|| , 𝜇||𝒇!
!,!||  

𝜹!
!,!

||𝜹!
!,!||

 

where 𝑘 is the elastic stiffness of the grain material. The magnitude of the tangential force is 
limited by the Coulomb criterion, where the coefficient 𝜇 describes the frictional limit. Here 𝜹! 
is the inter-grain overlap vector and 𝜹! is the cumulative movement on the contact plane. 
 

 

Figure S4. Two-dimensional schematic of an inter-grain contact. The size of the grain overlap 
on the right is exaggerated. The grain contact forces (𝒇𝒏 and 𝒇𝒕) are surface forces while the 

gravitational pull (𝒇𝒈) and fluid forces (𝒇𝒇) are body forces. 

 
The overlap vector is found as [Hindrichsen and Wolf, 2004, Luding, 2008, Damsgaard et al., 
2013] (Figure SM2): 

𝜹!
!,! = 𝒙!  − 𝒙! − (𝑟! + 𝑟!) 

where 𝒙 is the position of the grain center. The uncorrected total displacement in the contact 
plane (𝜹!

!,!) is found by integrating the displacements from each time step for the duration of a 
grain collision [Hindrichsen and Wolf, 2004, Luding, 2008]: 

𝜹!∗
!,! = 𝒗! − 𝒗! +  𝑟! +  

∥ 𝜹!
!,! ∥
2

𝒏!,!  × 𝝎! +  𝑟! +  
∥ 𝜹!

!,! ∥
2

𝒏!,!  × 𝝎!
 

!!
 

where 𝒗 is the linear grain velocity, and 𝝎 is the angular grain velocity. 𝑟 is the grain radius and 
𝒏 is the contact plane normal vector. The vector of displacement in the tangential plane is 
corrected for contact rotation [Hindrichsen and Wolf, 2004]: 
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𝜹!
!,! = 𝜹!∗

!,! −  𝒏!,! 𝒏!,! ∙ 𝜹!∗
!,!  

If the frictional limit at the contact is exceeded (𝑘!𝜹! > 𝜇𝐟!), the displacement vector in the 
contact plane (δt) is adjusted to a length consistent with Coulomb’s condition [Luding, 2008, 
Radjaï and Dubois, 2011]: 

𝜹!
!,! ≡

𝜇||𝒇!
!,!||
𝑘!

𝜹!
!,!

||𝜹!
!,!||

 

The grains are forced by the pore water through gradients in its pressure [Goren et al., 2011, 
Damsgaard et al., 2015]. Grains are attracted to zones of low fluid pressure and repelled from 
those of high pressure: 

𝒇! = −𝑉!∇𝑝! − 𝜌!𝑉!𝒈 
𝑉! is the grain volume, 𝜌! is the fluid density and 𝒈 is the gravitational acceleration vector. The 
latter term is buoyancy. Other interaction forces between fluids and submerged grains include 
drag force, lift forces caused by fluid velocity gradients (Saffman force), torques due to grain 
rotation (Magnus force), and interaction forces due to grain acceleration (virtual mass force) 
[Zhou et al., 2010]. These forces are not included in our experiments because the fluid 
velocities are low and the forces are therefore negligible [Damsgaard et al., 2015]. 

Once all surface and body force components for all grains are found, they are summed to 
give the total force and torque. The resulting force (𝑭) and torque (𝑻) is: 

𝑭! = 𝒇!! +  𝒇!
!,! +  𝒇!

!,! +  𝒇!
!

!∈!

 

𝑻! = − 𝑟! +  
∥ 𝜹!

!,! ∥
2

𝒏!,!  × 𝒇!
!,!

!∈!

 

for a grain 𝑖 that is part of 𝑁 contacts. 𝒇!  is the gravitational force, 𝑟 is the grain radius and 𝒏 is 
the contact normal vector [Damsgaard et al., 2013]. Finally, the new linear accelerations (𝒂), 
velocities (𝒗), and positions (𝒙) and angular accelerations (𝜶), velocities (𝝎) and positions (𝜃) 
for each grain are found by explicitly integrating Newton’s second law (𝑭 = 𝑚𝒂) in time. This 
is accomplished using higher-order Taylor expansions for a precise solution [Kruggel-Emden et 
al., 2008]: 

𝒂!! =
𝑭!!

𝑚!  

𝒗!!!!! = 𝒗!!Δ𝑡 +  𝒂!!∆𝑡 +  
1
2

 
𝒂!! − 𝒂!!!"!

𝛥𝑡
𝛥𝑡! 

𝒙!!∆!! = 𝒙!!  + 𝒗!!∆𝑡 
1
2

 𝒂!!Δ𝑡! +  
1
6
𝒂!! −  𝒂!!∆!!

∆𝑡
∆𝑡! 

𝜶!! =
𝑻!!

𝑚!  

𝝎!!!!
! = 𝝎!

!Δ𝑡 + 𝜶!!∆𝑡 
1
2

 
𝜶!! − 𝜶!!!"!

𝛥𝑡
𝛥𝑡! 

𝜽!!∆!! = 𝜽!!  + 𝝎!
!∆𝑡 

1
2

 𝜶!!Δ𝑡! +  
1
6
𝜶!! −  𝜶!!∆!!

∆𝑡
∆𝑡! 

 The granular model imposes strict requirements to the length of time steps as every 
time step must resolve seismic propagation of elastic waves through the smallest grains in the 
granular phase [Radjaï and Dubois, 2011]: 
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∆𝑡 =
𝜖

max (𝑘!, 𝑘!)
min (𝑚)

 

Here 𝜖 is a safety factor depending on grain packing and grain size distribution. We used a 
value of 0.07. The linear elasticity of the inter-grain contact model allows us to use a constant 
time step length, as stiffness does not evolve with contact loading. It should be noted that the 
bulk compressibility of the material increases nonlinearly with axial strain as the density of the 
grain packing increases. The computational cost increases with the number of particles, their 
elastic stiffness, and decreases with grain mass and, in turn, grain size. Additionally, the 
computationally intensive inter-grain contact search is most effective for narrow grain-size 
distributions. We have chosen a large, uniform grain size and a quartz-like elastic stiffness, 
resulting in a computational time step length on the order of 10−7 s. For a simulation length of 
35 s this results in ~108 time steps and a computation time of 70 days. The application of softer 
elastic moduli results in smaller porosity values and evolution during deformation. Lowering 
the density is a popular way to increase the computational time step. However, in our 
experience this can lead to volatile behavior since grains are more easily accelerated. 
 
Pore-water model 
The pore water is treated as a compressible Newtonian fluid without inertia [Goren et al., 2010, 
Goren et al., 2011, Damsgaard et al., 2015]. The temporal evolution of pore-fluid pressure 
(𝜕𝑝!/𝜕𝑡) is scaled by local changes in porosity (𝜙) through time (𝜕𝜙/𝜕𝑡) and spatial diffusion 
of pore-fluid pressure (𝑝!), which operates according to Darcy’s law: 

𝜕𝑝!
𝜕𝑡

=
1

𝜙𝛽!𝜇!
∇ ⋅ 𝑘∇𝑝!

!"#$%#& !"##$%"&'

−
1

 𝛽!𝜙(1 − 𝜙)
𝜕𝜙
𝜕𝑡

+ 𝒗 ⋅ ∇𝜙

!"#$% !"#$%&'

 

 

The fluid rheology is determined by the adiabatic compressibility (𝛽!) and dynamic 
viscosity (𝜇!). The granular forcing term corrects for spatial diffusion of porosity. 𝒗 is the 
average value of local grain velocity. The term 𝒗 ⋅ ∇𝜙 corrects for advection of porosity. Note 
that the above equation describes the pressure deviation from the hydrostatic value. The local 
intrinsic permeability (𝑘) is prescribed by a Kozeny-Carman type relationship, which scales 
permeability with porosity [Hazen, 1910, Kozeny, 1927, Carman, 1937, Harleman et al., 1963, 
McNamara et al., 2000, Goren et al., 2010, Goren et al., 2011, Damsgaard et al., 2015]: 

𝑘 = 𝑘!
𝜙!

1 − 𝜙 ! 
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Figure S5. Left: A cell in the fluid grid. The node for pressure (𝑝!), the gradient of fluid 

pressure (𝛻𝑝!), porosity (𝜙), permeability (𝑘), and average grain velocity (𝑣) is located at the 
cell center. Right: The weighting function 𝑠 at various distances from the cell center. 
 

We use a homogeneous cubic spatial discretization with cell side length 𝛥𝑥. For a cell 
with a set of 𝑁 grains in its vicinity, porosity is determined by inverse-distance weighing the 
grains (Figure SM3) [McNamara et al., 2000, Goren et al., 2011, Damsgaard et al., 2015]. The 
value of the weight function s decreases from 1 at the cell center to 0 at distance 𝛥𝑥 from the 
cell center (Figure S3): 
 

𝜙 𝒙! =  1 −  
𝑠 𝒙! − 𝒙! 𝑉!!!∈!

Δ𝑥!
𝑠 𝒙! − 𝒙!

= 1 −
|𝑥!! − 𝑥!,!|

Δ𝑥

!

!!!
, |𝒙!! − 𝒙!,!| and |𝒙!! − 𝒙!,!| and |𝒙!! − 𝒙!,!| < Δ𝑥

0, otherwise
 

Here 𝛥𝑥! is the fluid cell volume, and 𝒙!  is the cell-center position. The average grain velocity 
at the cell center is found using the same weighting function described above. Additionally, 
large grains contribute to the velocity with a greater magnitude: 
 

𝒗 𝒙𝒇 =
𝒔 𝒙𝒊 − 𝒙𝒇 𝑽𝒈𝒊𝒊∈𝑵 𝒗𝒊

𝒔 𝒙𝒊 − 𝒙𝒇𝒊∈𝑵
 

The temporal gradient in porosity is approximated by a central-difference scheme: 

𝜕𝜙
𝜕𝑡

≈
𝜙!!!! − 𝜙!!!!

2Δ𝑡
 

where the future porosity is found by predicting grain positions at 𝑡 + 𝛥𝑡 from the current 
kinematic state. 

The fluid pressure equation is integrated using the Crank-Nicolson method of mixed 
explicit and implicit temporal integration [Patankar, 1980, Ferziger and Perić, 2002, Press et al., 
2007]. The implicit solution is found with the iterative Jacobi relaxation method [Ferziger and 
Perić, 2002, Press et al., 2007]. The solution is unconditionally stable and second-order accurate 
in time and space. The fluid solver is sufficiently lightweight to use the same time step length 
as the granular solver, and thus fully resolves the fluid-grain interaction. 
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Boundary conditions 
The lower boundary is impermeable, and fluid pressure is prescribed at the top boundary. The 
grains at the lower boundary are fixed in space while the upper grains exert a constant shear 
stress in the direction of positive x. The upper grains are additionally loaded downwards by a 
frictionless wall, which exerts a prescribed and time variable normal stress on the granular 
assemblage. The wall and upper grains are free to move up and down, which allows for 
granular volumetric changes in response to pressure variations or porosity evolution. The 
lateral boundaries are periodic (wrap-around); if grains or fluids move outside the grid they 
reappear at the opposite boundary. Likewise, grains can be in mechanical contact although 
placed on opposite sides of the grid at the periodic boundaries.  
 
Scaling of model time: 1. Granular model 
Granular materials have the intrinsic ability to change mechanical phase [Jaeger and Nagel, 
1992, Hermann, 2002]. Depending on the average kinetic energy and the packing density (or 
porosity) of the grains, they can behave like a solid, a fluid, or a gas. The material rheology 
undergoes drastic changes along the phase thresholds, where the overall strength, rate 
dependence, and packing density suddenly change [GDR-MiDi, 2004, Krimer et al., 2012]. 

The steady-state rheology of dry and dense granular materials is generally strain-rate 
independent [GDR-MiDi, 2004, Damsgaard et al., 2013]. In the pseudo-static state the 
mechanical behavior of granular materials is a consequence of the inter-grain contact 
mechanics and the self-organizing complexity of the grain arrangement. If granular materials 
deform at higher shearing velocities, grain inertia dominates and deformation becomes rate 
dependent (Bagnold flow) [Zhang and Campbell, 1992, Aharonov and Sparks, 1999, 2002, 
Campbell, 2006, Krimer et al., 2012]. The importance of grain inertia on the material shear 
strength and dilation is quantified by the dimensionless inertia parameter I [GDR-MiDi, 2004]: 

𝐼 = 𝛾𝑟
𝜌
𝑁

 

where 𝛾 is the shear strain rate, 𝑟 is the mean grain radius, 𝜌 is the grain material density, and 
𝑁 is the effective normal stress. Experiments show that the dry granular materials deform in a 
pseudo-static and rate-independent manner when 𝐼 < 10!! [GDR-MiDi, 2004, Krimer et al., 
2012]. 

The average duration of inter-grain contacts decreases when the average kinetic energy 
of grains increases. In the solid state under constant forcing, grains spend the majority of time 
in a force-balanced configuration with many stable grain contacts. The other end-member 
state, known from sand storms and abrasive blasting, is the gaseous domain where inter-grain 
contacts are few and short-lived. The fluid state, where grain inertia influences the dynamics 
and duration of grain contacts in-spite of a relatively dense grain packing, is between the end-
member gas and solid states. 

The inertia parameter defined above implies that the ratio between grain kinetic energy 
and packing density controls the transition from the pseudo-static state, where grains are 
close to force equilibrium, to fluid behavior, where grain inertia significantly influences contact 
duration. The average kinetic energy or inertia of the actively deforming parts can be altered 
by varying the applied shear velocity or the grain mass. The effective normal stress (N) 
condenses the granular assemblage, causing high density and long-lived grain contacts. Large 
effective normal stresses lock the granular assemblage causing rate-independent frictional 
behavior. 

The grains in our numerical model are interacting using a linear elastic-frictional contact 
law, commonly used in discrete element models [Cundall and Strack, 1979, Aharonov and 
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Sparks, 1999, 2002, Goren et al., 2011, Damsgaard et al., 2013, 2015]. The dampening effect of 
quartz viscosity is negligible at the considered temperatures [Glaeson and Tullis, 1995] but is 
often introduced to dampen numerical oscillations and allow longer time steps under which 
the integration scheme otherwise introduces instabilities. A loaded contact has in our 
formulation no rate-dependent viscous components, implying no relative movement of a pair 
of grains at force balance under steady conditions. Instead we prescribed weak viscous energy 
dissipation in the direction perpendicular to the upper wall, which did not influence the 
overall mechanical behavior. 

Using the above relationship we analyze the role of granular inertia in the subglacial 
setting. Glacier sliding velocities are highly variable, ranging from zero to ten meters per day in 
extreme cases [Cuffey and Paterson, 2010]. Ice streams generally accelerate down flow, and the 
West Antarctic Whillans Ice Stream flows at averaged velocities of 400 to 800 m/a [Alley and 
Whillans, 1991], equivalent to 1.3 × 10−5 to 2.5 × 10−5 m/s. These velocities yield inertia 
parameter values in the pseudo-static and rate-independent range (𝐼 < 10!!), except when 
effective normal stress goes toward zero. However, we do not expect till rheology to influence 
ice flow in the latter case, since very small effective stress facilitates ice-bed decoupling 
without till deformation. 

The strict time step requirements for the soft-body discrete element method require that 
we scale model time. The granular behavior is rate-independent as long as 𝐼 < 10!! [GDR-
MiDi, 2004, Damsgaard et al., 2013], which in our simulations is satisfied in the stick and creep 
phases. The inertia parameter value, together with the rate-independent contact model, 
ensures rate-independence of shear stress and dilation in the granular phase and allows for 
time scaling. 
 
Scaling of model time: 2. Fluid model 
The scaling of time in the granular model forces us to also scale time in the fluid model. There 
are two possible ways of obtaining a consistent time scaling: 
 

1. Use scaled model time for the granular component and real time for the fluid 
model. The grain forcing terms in the fluid pressure equation (𝜕𝜙/𝜕𝑡 and 𝒗) are 
scaled by the time scaling factor used in the granular component. 

2. Use scaled model time for both the granular and the fluid components. This 
requires that the spatial diffusion term in the fluid pressure equation is scaled by 
the time scaling factor used in the granular component. 

 
Option 1 works by forcing the fluid with much slower rates, but simulating fluid behavior over 
a realistic time span. Option 2 works by enhancing the fluid ability to compensate against 
forcings from the granular phase or from the boundaries. We chose option 2 since the 
implementation is more straight-forward [Damsgaard et al., 2015]. 

Time scaling of the spatial diffusion of fluid pressure can be obtained by either adjusting 
the permeability 𝑘 or the dynamic fluid viscosity 𝜇!. We chose to adjust the fluid viscosity, 
which allows us to use realistic permeability values. Since fluid viscosity has a first-order 
influence on hydraulic diffusivity, we can use the same scaling factor value used in the 
granular component. Water at 0 oC has a dynamic viscosity of 1.797 × 10−3 Pa s, but the time 
scaling reduced the water viscosity to 1.040 × 10−6 Pa s. The scaled viscosity caused the fluid to 
more quickly adapt to internal and external changes, and match the scaled response of the 
granular phase. 
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Comparison to real subglacial materials 
Continuum methods are impractical for representing the discrete physical properties of 
granular materials, which is why we used the Discrete Element Method (DEM) for this study. 
However, the DEM is computationally expensive, as its explicit temporal integration scheme 
and the inclusion of elastic wave propagation require small time steps. Compared to real 
subglacial tills, the simulated material is by necessity simplified in many aspects, including 
lithology, grain rigidity, grain shape, and grain-size distribution. In the following, we address 
these simplifications one by one: 
 

• Lithology: The numerical model considers all grains to interact with a quartz-like 
elastic stiffness and friction, which we expect to be roughly equivalent to tills 
produced by subglacial erosion of unweathered bedrock. However, some subglacial 
tills contain considerable amounts of clay minerals from reworked sedimentary 
deposits. The particle-scale physical interaction of clay minerals is well constrained 
[Yao and Anandarajah, 2003], but their small size requires time steps of 10–13 s or less. 
This makes large-strain shear experiments unfeasible. Although the model is not 
designed to reproduce the ductile behavior of very clay-rich materials, we do expect 
our results to be transferable to clay-rich tills, however at different strain rates. 

• Grain rigidity: We do not include grain crushing or abrasion in our model. Previous 
studies have included these processes by bonding smaller grains into larger clusters 
[Abe and Mair, 2005], but the clusters can have unrealistic high porosities, leading to a 
large volumetric reduction during shear due to comminution. Grain crushing is known 
to cause creep in sand under uniaxial compression [Mitchell and Soga, 2006], but here 
we show that sustained creep can take place even in the absence of grain failure or 
time-dependent inter-grain contact weakening. 

• Grain shape: The model presented here treats grains as spherical particles, which are 
known to be mechanically weaker than angular particles [Mair et al., 2002, Damsgaard 
et al., 2013]. To compensate for this, we approximated friction due to surface 
roughness by increasing the frictional coefficient on the grain contacts to 0.5. We 
expect pre-failure creep to be reduced in densely packed angular materials since 
geometrical interlocking is likely to stabilize inter-grain contacts by increasing their 
friction. 

• Grain-size distribution: Many subglacial tills display a fractal grain-size distribution, 
implying that the largest grain size dictates the number and sizes of smaller grains 
above a lower size limit [Hooke and Iverson, 1995]. The grain-size distribution of the tills 
studied by Hooke and Iverson, 1995 is characterized by a fractal dimension of around –
2.9, which means that for each grain of size 1 cm there are on the order of 1011 grains 
smaller than it. Such grain numbers greatly exceed the computational capabilities 
currently at hand. 

 
Facing the above limitations, we chose to apply the DEM to investigate the fundamental 
dynamics in simple granular materials, and apply the achieved insights to the subglacial 
setting while acknowledging the simplifying assumptions. We expect pre-failure creep and 
rate-independent failure above the yield strength also in real granular materials, although the 
rates and yield strength is likely different and material dependent. We encourage efforts to 
investigate the creeping process through stress-controlled laboratory shear tests on real 
subglacial till samples with varying origin and compositional characteristics.  
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Introduction to Data File S1 
Data File S1 contains GPS record data used to produce Figure 4a. It was collected from 
Whillan’s ice plain as part of the WISSARD project. The first column is the day of year 2011. The 
second column is the net horizontal displacement of the GPS station LA10. The third column 
describes to the tidal variation, inferred from the vertical position of GPS station GZ05, situated 
on the ice shelf. 
 

 
Figure S6. Plan view of GPS station locations at Whillans Ice Plain, West Antarctica, 
projected in PS71. Ice flow is from the top left to the bottom right. The thin blue line 

marks the inferred grounding line, and GPS station positions are denoted with red dots. 
The ice velocities are from Rignot et al. 2011. 


