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Abstract Lagrangian models of sea ice dynamics have several advantages over Eulerian continuum
models. Spatial discretization on the ice floe scale is natural for Lagrangian models and offers exact solutions
for mechanical nonlinearities with arbitrary sea ice concentrations. This allows for improved model
performance in ice-marginal zones, where sea ice is fragmented. Furthermore, Lagrangian models can
explicitly simulate jamming processes that occur when sea ice moves through narrow confinements. While
difficult to parameterize in continuum formulations, jamming emerges spontaneously in dense granular
systems simulated in a Lagrangian framework. Here we present a flexible discrete element framework for
approximating Lagrangian sea ice mechanics at the ice floe scale, forced by ocean and atmosphere velocity
fields. Our goal is to evaluate the potential of models simpler than the traditional discrete element methods
for granular dynamics. We demonstrate that frictionless contact models based on compressive stiffness
alone are unlikely to produce jamming and describe two different approaches based on Coulomb friction
and cohesion which both result in increased bulk shear strength of the granular assemblage. The frictionless
but cohesive contact model displays jamming behavior which is similar to the more complex model with
Coulomb friction and ice floe rotation at larger scales and has significantly lower computational cost.

1. Introduction

Sea ice influences the atmosphere and ocean at high latitudes and thus the state of the climate throughout
the globe (e.g., Chiang & Bitz, 2005; Curry et al., 1995; Deser et al., 2000). In climate models, large-scale behav-
ior of sea ice is typically simulated using (elastic-)viscous-plastic (e.g., Hibler, 1979; Hunke & Dukowicz, 1997;
Thorndike et al., 1975) or elastic-plastic continuum models (e.g., Feltham, 2008; Girard et al., 2011; Rampal
et al., 2016; Weiss et al., 2007). Observations show that sea ice deformation in shear zones exhibits anisotropic
properties (e.g., Girard et al., 2009; Weiss & Schulson, 2009; Wilchinsky & Feltham, 2006). However, in contin-
uum models shear zones are greatly affected by grid resolution and mesh orientation (e.g., de Borst, 1991;
Rudnicki & Rice, 1975). The model behavior can be improved by using nonviscous rheologies and adaptive
meshes (e.g., Girard et al., 2011; Rampal et al., 2016). Moreover, continuum formulations are generally not
well suited for simulating the ice-marginal zone, where spatial variability in sea ice concentration and ice floe
thickness causes strong changes in mechanical properties. In such circumstances, continuum models do not
simulate advection of a diverse ice pack correctly (e.g., Horvat & Tziperman, 2015).

1.1. Sea Ice as a Granular Material
Previous studies argued that sea ice can be treated as a granular material, with a bulk rheology determined
by the local mechanics and geometry of discrete and interacting ice floes (e.g., Bak et al., 1988; Coon, 1974;
Feltham, 2005; Hopkins, 2004; Hopkins & Thorndike, 2006; Tremblay & Mysak, 1997). In granular materials
this behavior is called self-organized complexity as the overall behavior is governed by the local interactions
and the resultant many-body response of the system (e.g., Bak et al., 1988). Examples of granular phenomena
include jets of sea ice floes in the marginal ice zone (e.g., Feltham, 2005) and jamming (Herman, 2013; Kwok
et al., 2010; Rallabandi et al., 2017a, 2017b; Samelson et al., 2006). Mechanical rigidity of granular materials
increases with the grain-packing density. Granular systems jam when this strengthening exceeds the driv-
ing stress, for example, during flow through narrow conduits (e.g., Cates et al., 1998; To et al., 2001; Zuriguel,
2014). In the cryosphere jamming is observed and modeled in icebergs in Greenlandic fjords (Peters et al.,
2015; Robel, 2017) and controls the sea ice flux through narrow confinements such as the Nares Strait between
Greenland and Canada (e.g., Kwok et al., 2010; Rallabandi et al., 2017a, 2017b). Granular materials have a
highly nonlinear shear strength as a function of packing fraction or porosity. The nonlinear granular rheology
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can cause jamming in continuum models (e.g., Rallabandi et al., 2017a, 2017b) but does not capture the uncer-
tainty associated with the jamming process. A probabilistic model can describe the likelihood of granular
jamming (e.g., Tang et al., 2009; Thomas & Durian, 2015). In the model proposed by Tang et al. (2009) the
chance of survival Ps (the likelihood of the system to not undergo jamming) decreases exponentially with
time t:

Ps = exp(−t∕T), (1)

where the characteristic time scale of jamming T is dependent on the material, the experimental geometry,
and the forcing. The Mohr-Coulomb frictional coefficient𝜇u that links shear stress 𝜏u with compressive normal
stress N controls the mechanics of dense assemblages of granular materials:

𝜏u = C + 𝜇uN, (2)

where C is the material cohesion. This relationship is well established for granular materials (e.g., Terzaghi
et al., 1996) and ice (Feltham, 2008; Fortt & Schulson, 2007, 2009; Schulson & Fortt, 2012; Schulson et al.,
2006; Weiss et al., 2007). The effect of inertia on the postfailure rheology is described by the magnitude of the
dimensionless inertia number I:

I = 𝛾̇ d̄

√
𝜌

N
, (3)

where 𝛾̇ is the shear strain rate, d̄ is the representative grain diameter, and 𝜌 is the grain density. For low values
of the inertia number (I ≲ 10−3), granular rheology is essentially rate independent, and the Mohr-Coulomb
frictional coefficient 𝜇u and dilative response is constant (e.g., GDR-MiDi, 2004). For values of I ≳ 10−3, granu-
lar materials behave as viscoplastic Bingham materials, with the frictional coefficient depending in a nonlinear
fashion on the inertia number (da Cruz et al., 2005; Forterre & Pouliquen, 2008; GDR-MiDi, 2004; Jop et al.,
2006), that is, 𝜏u = 𝜇u(I)N. However, the 𝜇u(I) rheology does not include effects of nonlocality (e.g., Henann
& Kamrin, 2013), and, therefore, deformation is not distributed through material-dependent shear zones of
finite width. Dilation represents an additional complexity to granular shear zones with rigid particles and is
induced in dense packings as grains need space for relative movement (e.g., Nedderman, 1992; Reynolds,
1885; Terzaghi et al., 1996; Tremblay & Mysak, 1997; Wilchinsky et al., 2010, 2011). The magnitude of dila-
tion depends on material properties and the applied forcing (e.g., Aharonov & Sparks, 2002; Damsgaard
et al., 2013). Continuum modeling of dry and cohesionless granular materials is an area of active research and
debate (e.g., Bouzid et al., 2013; da Cruz et al., 2005; Forterre & Pouliquen, 2008; Henann & Kamrin, 2013; Jop
et al., 2006). For this reason we use particle-based Lagrangian methods for our sea ice modeling, as individual
ice floe contact mechanics are more established than continuum rheologies.

1.2. Numerical Methods for Granular Materials
The discrete element method (DEM, also known as the distinct element method) is widely used to model gran-
ular media and discontinuous materials in a variety of contexts (e.g., Radjaï & Dubois, 2011). The most popular
approach is the soft body DEM, originally derived from molecular dynamics modeling principles by Cundall
and Strack (1979), where grain kinematics are determined by explicit temporal integration of their momentum
balance. The DEM has been applied with discretizations on the sub-ice floe scale (Hopkins et al., 1991) or with
particles representing a collection of ice floes (Li et al., 2014). Thus far, for sea ice modeling the DEM is typically
applied to simulate one ice floe per particle (e.g., Gutfraind & Savage, 1997a; Herman, 2016; Hopkins, 2004).

However, the DEM and other Lagrangian approaches to modeling sea ice dynamics have not been used
as components of global climate models because of high computational expense. Sea ice models based
on smoothed-particle hydrodynamics have been proposed (e.g., Gutfraind & Savage, 1998; Lindsay & Stern,
2004), which offer better computational performance and Lagrangian discretizations. However, the complex-
ity and kinematic phase transitions of granular materials are difficult to generalize in continuum formulations
required for Eulerian models and smoothed-particle hydrodynamics approaches (e.g., Aharonov & Sparks,
1999; Bouzid et al., 2013; da Cruz et al., 2005; GDR-MiDi, 2004; Gutfraind & Savage, 1997b; Monaghan, 2012).

The DEM is generally a computationally intensive approach. Due to the Lagrangian nature of the method,
sophisticated neighbor search algorithms are required to minimize the computational cost of contact map-
ping. Furthermore, the explicit temporal integration of the per-grain momentum balance is determined by
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the elastic wave speed through the granular assemblage and thus requires short time steps for attaining
numerical stability (e.g., Kruggel-Emden et al., 2008, Radjaï & Dubois, 2011),

Δt ≤ 𝜖√
max(kn)
min(m)

, (4)

where 𝜖 is a safety factor (e.g., 𝜖 = 0.07), max(kn) is the largest elastic stiffness in the system, and min(m) is the
smallest particle mass. As apparent from equation (4), small ice floes require small time steps, while softening
of the elastic modulus can speed up the computations. In order to increase the computational efficiency, it
is common in DEM applications to both remove smaller grains and reduce the elastic stiffness of the grains,
resulting in an increased time step length. The effect of these modifications can be assessed by evaluating the
inertia number (equation (3)). If it remains in the rate-independent regime of I ≲ 10−3, a grain size increase
and/or elastic softening will be inconsequential for the overall strength and dilative behavior of the granular
system. If I > 10−3 the shear stress and dilation will increase nonlinearly with increasing shear strain rate (e.g.,
da Cruz et al., 2005; GDR-MiDi, 2004). However, the DEM time step (subseconds to tens of seconds) is generally
much shorter than climate model time steps (minutes to hours).

The goal of this study is to develop a numerical approach for simulating sea ice on the individual floe scale,
which, at the same time, is computationally efficient enough to be used as a component of a climate model
(e.g., Delworth et al., 2006; Gnanadesikan et al., 2006; Griffies et al., 2005). To do so, we make methodological
simplifications relative to other discrete element studies on sea ice and explore the large-scale implications
of different choices of contact rheology.

2. Methods
2.1. Governing Equations
For computational efficiency, we treat the ice floes as cylinders moving in two dimensions along the
atmosphere-ocean interface. The ice floe geometry is described by thickness h and horizontal radius r. The
translational momentum balance for an ice floe with index i is

mi D2xi

Dt2
=
∑

j

(
fij

n + fij
t

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Contact forces

+fi
o + fi

a, (5)

where m is the ice floe mass, x is ice floe center position, and fn and ft is granular contact-normal and tangential
force from interaction with ice floe j. The external forces fo and fa are ocean- and atmosphere-induced drag,
respectively. Similarly, the angular momentum balance for grain i is

Ji
z

D2Ωi

Dt2
=
∑

j

(
rinij × fij

t

)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Contact torques

+ti
o + ti

a. (6)

Jz is the moment of inertia around the vertical center axis, and Ω is the angular position of ice floe i. The
contact-normal unit vector is denoted nij . The ocean and atmosphere can induce rotational torques to and ta

due to floe vorticity or ice floe rotation. The forces and torques that appear in the linear and angular momen-
tum balances are described below. In this study, and in the above equations for momentum, we disregard
Coriolis forces, sea surface slope, or wave action. These terms should be considered when implementing in
coupled models but are omitted here due to the idealized ocean and atmosphere in our simulation setups.
We integrate the momentum balance equations in time using a third-order Taylor expansion scheme, which
is computationally simple and has a high level of numerical precision (e.g., Kruggel-Emden et al., 2008).

In this study, we compare the jamming behavior of two differing ice floe contact models. Common to both
models is fn, the resistive force to axial compressive strain between to cylindrical ice floes i and j, which is
modeled by (Hookean) linear elasticity based on the overlap distance 𝜹n:

fij
n = AijEij

𝜹
ij
n when 0> |𝜹ij

n| ≡ |xi − xj| − (ri + rj). (7)
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This is a common approach in discrete element simulations (e.g., Cundall & Strack, 1979; Damsgaard et al.,
2016, 2017; Ergenzinger et al., 2011; Luding, ). The contact cross-sectional area Aij = Rij min(hi, hj) is deter-
mined by the harmonic mean Rij = 2rirj∕(ri + rj) of the ice floe radii ri and rj , as well as the smallest of the
involved ice floe thicknesses hi and hj . The harmonic mean of Young’s modulus Eij scales the linear elastic force
resulting from axial strain of a distance |𝜹ij

n|. The stiffness is scale invariant (e.g., Obermayr et al., 2013) and
assumes constant elastic properties of the ice itself, regardless of ice floe size. We note that nonlinear elas-
ticity models based on Hertzian contact mechanics may alternatively be applied to determine the stresses
resulting from contact compression (e.g., Herman, 2013, 2016). However, with nonlinear stiffness models the
numerical stability of the explicit temporal integration scheme depends on the stress and packing state of the
granular assemblage and will under compressive stress extremes require very small time steps. In the simu-
lations in this study, we use a Young’s modulus of E = 2.0 × 107 Pa. This value is lower than what is observed
for ice (e.g., Petrovic, 2003; Schulson, 1999) but strikes a reasonable balance between elastic compressibility
and computational efficiency.

As we demonstrate below, models based on compressive strength alone result in a weak sea ice pack and are
not sufficient to cause granular jamming. We explore two modifications to the contact model presented in
equation (7). The first approach is typical to DEM models and is based on resolving shear resistance through
tangential (contact parallel) elasticity, not exceeding the Coulomb frictional limit. An alternative approach,
fundamentally complementary to compressive elasticity and shear friction, is tensile strength of ice floe
contacts which leads to a cohesive bulk granular rheology.

2.2. Tangential Elasticity With Coulomb Friction
DEM models typically include resistance against slip between particles, by limiting relative tangential move-
ment for interparticle contacts (e.g., Cundall & Strack, 1979). Tangential elasticity is resolved by determining
the contact transverse travel distance 𝜹t (i.e., the vector of shear motion) on the contact plane for the duration
of the contact tc:

𝜹
ij
t = ∫

tc

0

[
(vi − vj) ⋅ t̂ij − Rij

(
𝜔i + 𝜔j

)]
, (8)

where v and 𝜔 denote linear and angular velocity, respectively. The contact-parallel unit vector is denoted t̂.
The contact transverse travel distance 𝜹t is corrected for contact rotation over the duration of the interaction
and is used to determine the contact-tangential elastic force:

fij
t = EijAij

Rij

2(1 − (𝜈 ij)2)
(2 − 𝜈 ij)(1 + 𝜈 ij)

𝜹
ij
t , (9)

where 𝜈 ij is the harmonic mean of the Poisson’s ratios set for the ice floes. We use a constant value of 𝜈 = 0.185
(Hopkins, 2004). Coulomb friction on the grain surface limits the tangential force, relative to the magnitude
of the normal force: |fij

t | ≤ 𝜇ij|fij
n|. (10)

The Coulomb frictional coefficient 𝜇 introduced above describes resistance to sliding along the individual
grain surfaces and should not be mistaken for the bulk Mohr-Coulomb frictional coefficient 𝜇u (equation (2))
that describes frictional behavior of an assemblage of many grains. In the case of slip (|ft|>𝜇|fn|) the length of
the contact transverse travel distance 𝜹t reduces to be consistent with the Coulomb limit. This loss in energy
storage accounts for tangential contact plasticity and irreversible work associated with contact sliding. Since
the above model of tangential shear resistance is based on deformation distance on the interfloe contact
plane, it requires solving for ice floe rotational kinematics of each ice floe and a bookkeeping algorithm for
storing contact histories.

2.3. Tensile Contact Strength
Cohesion (mechanical attraction between separating ice floes) is introduced by parameterizing resistance
to extension beyond the overlap distance between a pair of ice floes (i.e., 𝛿ij

n > 0). For actual ice floes, ten-
sile strength can arise due to refreezing (e.g., Menge & Jones, 1993; Schulson, 2001). The general description
of bond mechanics includes resistance to bond compression, tension, shear, twist, and rolling (e.g., Herman,
2016; Obermayr et al., 2013; Potyondy & Cundall, 2004). Here we explore the applicability of using bond
resistance to compression and tension alone as mechanical components contributing to bulk granular
shear strength. The calculations for doing so are simpler than for the elastic-plastic Coulomb friction
described above.
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We parameterize tensile strength by applying equation (7) for the extensive regime (𝛿n > 0). Equation (7) is
enforced until the tensile stress exceeds the tensile strength 𝜎c defined for the bonds:

|fij
n| ≤ min(𝜎 i

c, 𝜎
j
c)Aij. (11)

Cross-sectional area of the contact is found as Aij = Rij min(hi, hj) as in equation (7). The bond failure corre-
sponds to Herman (2016) where a complete loss of tensile stress occurs when the tensile strength is exceeded.
This is different from the linear decrease in stress after failure parameterized in Hopkins (2004) and Hopkins
and Thorndike (2006).

Hopkins (2004) establishes full tensile strength for the ice pack once every 24-hr cycle. Here we set the
bonds to obtain full tensile strength as soon as a pair of ice floes first undergoes compression (𝛿n < 0).
Time-dependent strengthening (𝜎c(t) and d𝜎c∕dt > 0) causes a strain rate weakening that is not of immediate
interest for this study.

2.4. Drag From Ocean and Atmosphere
We adapt v2-type parameterizations for characterizing Stokes drag forces between ice floes and ocean or
atmosphere. This approach is common in both Lagrangian and Eulerian models (e.g., Herman, 2016; Hopkins,
2004; Rallabandi et al., 2017a),

fi
o = 𝜋𝜌o

(
cv,o2riDi + ch,o(ri)2

)
(vo − vi)|vo − vi|, (12)

where we use an idealized value of 𝜌o = 1 × 103 kg/m3 as ocean density, D is the ice floe draft (here set to
Di = 9hi∕10), and cv,o = 0.14 and ch,o = 1.6×10−4 are vertical and horizontal drag coefficients (e.g., Gladstone
et al., 2001; Martin & Adcroft, 2010), compatible with typical values in sea ice modeling (e.g., Hopkins, 2004).
The ocean velocity is vo, and ice floe velocity is v. Similarly, for the atmosphere-induced drag,

fi
a = 𝜋𝜌a

(
cv,a2ri(hi − Di) + ch,a(ri)2

)
(va − vi)|va − vi|. (13)

The atmosphere density is 𝜌a = 1.3 kg/m3. The vertical and horizontal drag coefficients are cv,a = 0.064 and
ch,a = 8.0 × 10−5, respectively. The wind velocity is va. The curl of the ocean or atmosphere velocities (∇ × vf)
induces a rotational torque (t) on the ice floes (e.g., Nakayama & Boucher, 1998), sometimes ignored in DEM
sea ice models:

ti
o = 𝜋(ri)4

𝜌o

(
ri

5
ch,o + Dicv,o

)
((∇ × vo)∕2 − 𝜔i)|(∇ × vo)∕2 − 𝜔i|, (14)

and

ti
a = 𝜋(ri)4

𝜌o

(
ri

5
ch,a + (hi − Di)cv,a

)
((∇ × va)∕2 − 𝜔i)|(∇ × va)∕2 − 𝜔i|, (15)

where 𝜔 is the ice floe angular velocity. The above terms add rotational drag for a spinning ice floe and can
induce rotation for ice floes in ocean or atmosphere fields with high vorticity. Ocean and atmosphere curl may
be reasonable to neglect on the ice floe scale (e.g., Herman, 2016) but are included here nonetheless.

2.5. Boundary Conditions
The domain boundaries can interact with the granular assemblage in a variety of ways. Ice floes are disabled
from mechanical interaction with the rest of the ice floes when crossing an inactive boundary. Ice floes can
interact mechanically across opposite sides of the model domain if the edges are periodic boundaries and
are immediately repositioned to the opposite side if they cross a domain edge. Fixed boundaries are created
by placing ice floes along a line and keeping them fixed in space. Optionally, the fixed grains can move at
prescribed velocities. The free-moving ice floes undergo the same mechanical interactions with the fixed ice
floes as used for their internal interactions. For the cohesive model, tensile bonds between free and fixed ice
floes effectively create landfast ice areas. Finally, flat and frictionless walls can provide normal stress boundaries
to the granular assemblage. These walls attempt to fulfill a certain contact stress normal to their geometric
orientation and move through time to uphold the prescribed stress. They are assigned a constant mass, and
their kinematics are resolved with explicit temporal integration of their stress balance, similar to the temporal
integration performed for the ice floes themselves.
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2.6. Model Limitations
The presented model is not sufficiently general for being a complete formulation for sea ice mechanics. For
example, we do not include a parameterization of pressure ridging, important for mechanical redistribution
of ice mass in converging regimes (e.g., Flato & Hibler, 1995; Hibler, 1980; Hopkins et al., 1991; Lipscomb et al.,
2007; Rothrock, 1975; Thorndike et al., 1975). Furthermore, the ice floe shape is highly simplified as we neglect
geometrical anisotropy and associated mechanical effects (e.g., Feltham, 2008; Hopkins, 2004; Wilchinsky &
Feltham, 2006; Wilchinsky et al., 2011). However, direct modeling of polygonal sea ice floes is computationally
excessive in the targeted context. Here we focus on differences between simple DEM models with the fewest
additional layers of abstraction. Consequentially, the simulation results should not be compared directly to
real settings, as further analysis and model development is required to do so.

The components of interaction on the ice floe scale influence the bulk behavior under various settings and
forcings. The interaction described in the previous is typical for DEM implementations for sea ice in the
literature (e.g., Herman, 2016; Hopkins, 1996, 2004).

3. Numerical Model
3.1. Implementation
We implement the model described above as a stand-alone and purpose-built DEM sea ice model
Granular.jl (Damsgaard, 2018a). In this study we use drag from prescribed ocean and atmosphere veloc-
ity fields and explore strengths and limitations of different methods related to sea ice mechanics. A separate
online repository contains the simulation scripts (Damsgaard, 2018b).

The effects of the ocean and atmosphere are here prescribed as constant velocity fields. The interpolation to
the discrete ice floes is determined with bilinear interpolation to the ocean and atmosphere grids. The rela-
tive importance of neighboring grid points decreases linearly with distance. Ice floe contacts are detected by
binning the population of ice floes with in a grid, where the cell width equals the largest ice floe diameter. All
contacts for an ice floe can reliably be detected by searching for overlaps within the current and eight neigh-
boring cells. Ice floes are transferred between the cell lists according to their movement through the sorting
grid. This approach significantly reduces the computational overhead ((n)) compared to all-to-all contact
searches ((n2)) (e.g., Ericson, 2005). We do not include thermodynamic processes, and ice floe geometries
do not change over the course of each simulation.

3.2. Experiments
We perform two types of experiments in order to understand the granular rheology and its applicability to
simulate sea ice dynamics. In both cases we generate ice floe sizes by a power law distribution within the
range rmin to rmax with an exponent of value −1.8, commonly used for describing sea ice in the marginal zone
(e.g., Herman, 2010, 2013; Steer et al., 2008). For the experiments we parameterize the granular interaction in
one of two ways:

1. Coulomb frictional DEM: linear elastic resistance to compressive strain normal to the contact interface
(equation (7)) and linear elastic resistance to shear strain on the contact interface, with Coulomb friction
limiting the tangential force magnitude (equation (10)). The kinematics are resolved with the translational
and rotational momentum equations (equations (5) and (6)).

2. Cohesive DEM: linear elastic resistance to compressive strain normal to the contact interface (equation (7))
and linear elastic resistance to extensional strain between a bonded ice floe pair with a breakage criterion
(equation (11)). The kinematics are resolved for translation only (equation (5)). Rotation (equation (6)) and
contributing components (equations (8)–(10), (14), and (15)) are ignored.

Approach 1 requires that rotational kinematics of the ice floes are resolved (equation (6)) for correctly deter-
mining the tangential contact displacement (equation (8)). Including rotation approximately doubles the
kinematic degrees of freedom and required computations. Approach (2) is computationally cheaper as it
does not require resolving rotation (the ice floes are effectively frictionless). Without friction, the bulk shear
strength is provided by geometrical roughness in the granular contact network. Cohesion further strength-
ens the granular topology and adds increased bulk resistance to deformation. The Coulomb frictional model
(approach 1) is the standard method for simulating cohesionless granular materials and will for our pur-
poses serve as a benchmark for testing the applicability of the less complex cohesive model (approach 2). We
expect that the bulk mechanics for the two models can be similar in certain settings but differ in others as the
micromechanical behavior is fundamentally different.
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Figure 1. Simulation setup for the simple shear experiments. The upper and lower walls exert a prescribed normal stress
to the granular assemblage, and a constant velocity along x is enforced for the uppermost ice floes. Left and right (−x
and +x) boundaries are periodic.

3.2.1. Simple Shear
We perform simple shear experiments on dense granular packings, where the ice floes are sheared from a
preconsolidated state under a constant normal stress (Figure 1). The primary objective of these experiments is
to validate the Mohr-Coulomb frictional behavior typical for granular materials (equation (2); e.g., Nedderman,
1992) and assess how the type of grain-to-grain contact rheology influences bulk stress properties. In the
shear experiments we do not include ocean and atmosphere drag, as we are interested in analyzing the ice
floe mechanics alone.

We adapt a simple-shear setup with boundary conditions typical in DEM modeling (e.g., Damsgaard et al.,
2013), with a schematic overview in Figure 1. We initially generate ice floes with radii between 5 and 50 m in
an irregular spatial arrangement without geometrical overlaps. We then apply a uniform ocean drag toward
the lower boundary (−y) in order to increase the packing ratio. We then disable the ocean drag and perform

Figure 2. Simulation setup for the idealized strait experiments. Ocean velocities vary from 0 to 4 m/s relative to the
bounding geometry, while the atmosphere velocity field is a uniform value of 30 m/s.
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Figure 3. Steady state stress and friction during simple shear for Coulomb frictional model runs (𝜇 = 0.3 and 𝜎c = 0 kPa;
see equations (10) and (11)) and cohesive model runs (𝜇 = 0 and 𝜎c = 200 kPa). (a) The bulk shear stress 𝜏u increases
linearly with the applied normal stress. We optimize equation (2) using a least squares fit and note parameter estimates
and 95% confidence intervals in the legend. (b) Effective friction observed in the two model types. DEM = discrete
element method.

a consolidation step in order to further uniaxially compress the packing in equilibrium with the stress forcing,
as common in Mohr-Coulomb tests on granular materials (e.g., Bowles, 1992; Mitchell & Soga, 2005). The con-
solidation is performed by adding a normal stress boundary condition to the top (+y). Finally, we perform
a constant-rate shear step by prescribing a velocity toward +x of 1 m/s to the grains just below the upper
boundary (Figure 1). The bulk shear stress is determined from the sum of contact forces along y against the
top grains. The side boundaries (−x and+x) are periodic in order allow arbitrary shear strains without geomet-
rical constraints. Grains that are positioned within one grain size to the lower boundary (−y) are fixed in space
in order to provide geometrical and mechanical roughness. The parameter choices result in granular inertia
parameters in the range of I = [10−3; 10−2] (equation (3)), so slight shear rate dependence on the observed
bulk shear stress can be expected.

3.2.2. Jamming in Idealized Straits
In this set of experiments we use ocean and atmosphere drag to push the ice floes through a confining
strait of funnel-shaped geometry (Figure 2) and analyze how the ice floe properties influences the likeli-
hood of granular jamming. The geometry is similar to the ones from earlier studies focused on ice discharge
with smoothed-particle dynamics and a discrete element model outside of the regime of granular jamming
(Gutfraind & Savage, 1998). The ice floes are forced with wind and ocean current fields oriented from north to
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Figure 4. Ice floe displacements in the simple shear experiments with a normal stress of N = 20 kPa. DEM = discrete
element method.

south. The spatial velocity pattern of the ocean is defined by a stream function, where the ocean flows through
the confining strait with a velocity field consistent with mass conservation. Ice floes are initially placed in a
pseudorandom arrangement north of the channel. During our initial tests we observed that the simulated
material never jammed inside the flat-walled channel but always at or before the channel entrance. For that
reason, we constrain our simulation domain size to only include the relevant parts.

New ice floes are continuously added to the top of the domain as soon as there is space to accommodate
them. The sizes are drawn from the same power law size distribution. The bottom edge of the domain is an
inactive boundary. During each experiment we determine the mass of disabled ice floes at the bottom as a
measure of cumulative ice transport through the strait. If granular jamming occurs, ice floes stop reaching the
bottom. We impose the criteria that the ice mass at the bottom must have been constant for more than 1 hr in
simulation time for being classified as jammed. The experiments rely on pseudorandom number generation
for generating ice floe size distributions, in order to obtain statistical description of the behavior (equation (1)).
The radii are drawn between 600 and 1,350 m. We seed the pseudorandom number generation with different
values and repeat each experiment 10 times with identical mechanical parameters to assess the statistical
probability of granular jamming.

4. Results

In this section we compare bulk behavior between the algorithmically complex Coulomb frictional model
and the simpler cohesive model. The supporting information contains animations of the shear and jamming
experiments.

A benchmark of the computational performance reveals that the interaction routine is 2.1 times faster for the
cohesive model relative to the Coulomb frictional model. By avoiding rotation, kinematic degrees of freedom
are in our two-dimensional (2-D) setup reduced from 9 to 6 for the cohesive model. The models have identical
requirements for the granular contact search, so performance here is not improved.

4.1. Simple Shear
We observe that both the Coulomb frictional and cohesive models follow the Mohr-Coulomb constitutive
relation (equation (2)), as the bulk shear stress of the granular assemblages 𝜏u scales linearly with normal stress
N applied normal to the shear direction (Figure 3a). The Coulomb frictional model produces an ice floe pack
with a small value for bulk cohesion (C) and a strong linear correlation between normal stress and shear stress.
The cohesive model results in an ice floe pack with a higher bulk cohesion, but it also shows increasing shear
stresses with increasing normal stress. There is a reasonable overlap in shear stress between the two models
at N ∈ [5; 40]. However, the bulk friction is not the same across a larger range of N because of the different
micromechanical assumptions of the two models.
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Figure 5. Example visualization of the granular system for the idealized strait runs, here the initial state (a), during flow
(b), and in a jammed state (c). Black arrows denote the linear velocity of the ice floes, and colored bars indicate
compressive or tensile granular interactions. The above visualizations are for run 1 out of 10 with 𝜇 = 0 and
𝜎c = 400 kPa.
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Figure 6. (a) The cumulative mass of ice flushed through the idealized strait over time in experiments of identical
mechanical parameters (cohesive model, 𝜇 = 0 and 𝜎c = 400 kPa) but with random perturbations to the initial ice floe
placements and sizes. (b) Probability of survival (nonjamming) Ps for the ensemble in (a), with a corresponding least
squares fit of equation (1). The legend shows the best fit value for the characteristic jamming time T , as well as the
sample standard deviation around the mean. DEM = discrete element method.

The effective shear friction (𝜏u∕N) is a metric that describes bulk mechanical properties during shear
(Figure 3b). For the Coulomb frictional tests, we see that the bulk frictional coefficient (𝜇u ≈ 0.25, equation
(2) is lower than the Coulomb frictional coefficient we parameterize on the contact level (𝜇 = 0.3, equation
(10). Ice floe rotation decreases the bulk strength, which is common for 2-D granular systems with circular
grains. The Coulomb frictional model retains most of its effective friction under the tested range of normal
stresses (Figure 3b), in line with observations of sea ice mechanics (e.g., Fortt & Schulson, 2007; Schulson et al.,
2006; Weiss et al., 2007). In contrast, the cohesive model becomes monotonically weaker under larger normal
stresses, with a large decrease in the lower range of N. While strong cohesion is expected to localize failure,
the distribution of shear strain (Figure 4) is similar in the two models. The only difference is that shear strain
is slightly more localized toward the moving boundary in the Coulomb frictional DEM and more linear and
distributed in the cohesive DEM.

4.2. Jamming in Idealized Straits
By adjusting the grain-to-grain frictional coefficient 𝜇 (equation (10)) and the tensile strength 𝜎c (equation
(11)), we can assess jamming tendencies in the two models Figure 5 shows our setup where atmosphere
and ocean force ice floes through an idealized strait. Figure 6a shows that the time to jamming is strongly
influenced by small variations in initial ice floe configurations. With the applied contact parameters (𝜇 = 0
and 𝜎c = 400 kPa), all 10 runs jam after a period of ∼7 hr. We plot the ratio of survived (nonjammed) runs
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Figure 7. The influence of the Coulomb frictional coefficient 𝜇 (equation (10)) and the tensile strength 𝜎c (equation (11))
on the characteristic time for jamming T (equation (1)) through a strait of width W = 6,000 m. A statistically significant
fit could not be achieved from the Coulomb frictional ensemble with 𝜇 = 0.35. Red ticks denote tested values. DEM =
discrete element method.

as a function of time (Figure 6b) and fit an exponential decay function to the survival fraction (Tang et al.,
2009, equation 1) with the Levenberg-Marquardt algorithm of nonlinear least squares optimization. The decay
time scale parameter T and the sample standard deviation sT are useful metrics for comparing the effect of
different prescribed properties to the jamming behavior of the ice pack system. We offset the curve fit in time
corresponding to the first occurrence of jamming.

We observe that larger friction coefficients 𝜇 increase the mechanical rigidity and increase the likelihood
of jamming in the Coulomb frictional model with rotation (Figure 7, black ticks). Similarly, increases in
grain-to-grain tensile strength increases the likelihood of jamming in the reduced-complexity model with
cohesion (Figure 7, blue ticks). Neither model displays jamming as the system becomes frictionless (𝜇 → 0)
or cohesionless (𝜎c → 0), highlighting the need for including interactions other than contact-normal elastic
repulsion (equation (7)). Due to the monotonic nature of the jamming time scale in both models, we can deter-
mine a value for the tensile strength 𝜎c that with the cohesive model corresponds to the jamming behavior
of a certain 𝜇 value for the Coulomb frictional model (or vice versa). The jamming behavior is broadly similar

Figure 8. Jamming behavior with increasing width of the strait (Figure 5) for Coulomb frictional (𝜇 = 0.3 and 𝜎c = 0 kPa)
and cohesive runs (𝜇 = 0 and 𝜎c = 200 kPa). The frictional model does not show jamming above W = 7,000 m, and the
cohesive model does not show jamming above W = 6,000 m. Red ticks denote tested values. DEM = discrete element
method.

DAMSGAARD ET AL. 2239



Journal of Advances in Modeling Earth Systems 10.1029/2018MS001299

Figure 9. Jamming behavior with increasing width of the particle size distribution for Coulomb frictional (𝜇 = 0.3 and
𝜎c = 0 kPa) and cohesive runs (𝜇 = 0 and 𝜎c = 200 kPa). Red ticks denote tested values. DEM = discrete element method.

for the Coulomb frictional model with 𝜇 = 0.3 and 𝜎c = 0 kPa, and the cohesive model with 𝜇 = 0 and
𝜎c = 200 kPa (Figures 7a and 7b).

In both models, jamming does not occur across straits that are wide with respect to grain size, consistent with
the expectation of constant granular discharge across wide confinements (Figure 8). As strait width decreases,
the jamming time scale T decreases in a nonlinear fashion for both the Coulomb frictional and cohesive mod-
els. With the applied parameters the Coulomb frictional model was able to jam in straits of width W = 7,000 m,
while the cohesive model only displayed jamming up to W = 6,000 m.

We also increase the width of the generated particle size distribution around the same mean value and
observe that jamming occurs faster in wide size spans (Figure 9). While smaller ice floes act as lubricants facili-
tating flow, larger ice floes provide structural rigidity leading to eventual jamming. It is primarily the advection
of larger ice floes to the strait entrance that causes the jamming itself. In the Coulomb frictional model, ice floe
thickness does not directly influence jamming behavior (Figure 10), as the presented implementation adjusts
stress-based yield criteria for contact sliding and tensile bond breakage accordingly. However, the cohesive
model displays increased likelihood of jamming with increased thicknesses, similar to previous studies of ice
bridge stability in confinements (Rallabandi et al., 2017b).

Figure 10. Jamming behavior with uniformly increasing thickness of the ice floes for Coulomb frictional (𝜇 = 0.3 and
𝜎c = 0 kPa) and cohesive runs (𝜇 = 0 and 𝜎c = 200 kPa). Red ticks denote tested values. DEM = discrete element method.
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5. Discussion and Summary

We have developed a flexible discrete element framework for simulating Lagrangian sea ice dynamics at the
ice floe scale, forced by ocean and atmosphere velocity fields. Frictionless contact models based on compres-
sive stiffness alone are very unlikely to jam. We describe two different approaches based on Coulomb friction
and tensile strength, where both additions result in increased bulk shear strength of the granular assem-
blage. We demonstrate that the discrete element approach is able to undergo granular jamming when forced
through an idealized confinement, where the probability of jamming is determined by the channel width,
ice floe thicknesses, and ice floe size variability. The frictionless but cohesive contact model can, with certain
tensile strength values, display jamming behavior which on the large scale is broadly similar to a model with
contact friction and ice floe rotation. However, the behavior of the two models is not exactly similar in other
settings. During shear, the models show separate trends in bulk effective friction, and differing behavior is
expected under pure divergent forcings.

Our results are consistent with previous studies on granular mechanics, specifically regarding how the mag-
nitude of the Coulomb frictional coefficient influences bulk behavior. Morgan (1999) demonstrated that the
particle-frictional coefficient increases bulk frictional strength of dense and 2-D systems up to a certain point
where grain rolling becomes dominant over grain-to-grain contact sliding. Kamrin and Koval (2014) showed
that particle surface friction affects bulk behavior and that increasing Coulomb frictional coefficients increase
shear strength. Furthermore, and under certain conditions, the spatial distribution of shear deformation
can be affected by the micromechanical grain friction. Morgan (2015) investigated the combined effects of
Coulomb friction and tensile cohesion on the structural and mechanical evolution of fold and thrust belts
and contractional wedges. In this study, broken bonds did not reform over time. It was observed that large
tensile bond strengths caused increases in bulk shear strength, primarily by increasing the bulk cohesion in
the Mohr-Coulomb constitutive relationship. Cohesion caused the material to behave in a rigid manner, with
thin shear zones of broken bonds where bonds have failed. Without cohesion, deformation was more dis-
tributed in space. In our experiments, we observe similar behavior where increasing tensile strengths makes a
dense ice pack behave like a rigid system (Figure 5c). However, our parameterization reforms bonds progres-
sively when ice floes again come into contact, which limits the strain weakening otherwise associated with
bond breaking.

The Coulomb frictional DEM model naturally strengthens in a linear manner with increasing compressive
stress on the contacts (equation (10)), which linearly increases bulk shear strength (Figure 3a), as typical
for granular materials tested in laboratory shear devices or when simulated with the DEM (e.g., Damsgaard
et al., 2013; Morgan, 2015). The contacts of the cohesive model do not strengthen due to increased contact
loading, which explains the weaker behavior observed at large normal stresses (Figure 3c). However, shear
strength does still increase, since larger normal stresses on the shear zone cause self-arrangement into a
denser packing. The dense system contains relatively more contacts with tensile strength, which on a bulk
scale strengthens the mechanical resistance to shear. While cohesion can affect deformation patterns (e.g.,
Morgan, 2015) the shear profiles are not significantly different between the two profiles (Figure 4). We do not
expect notable difference in deformation patterns on larger scales unless strong cohesion is applied.

The approach used in this study relies on many simplifications and is not capable of producing the richness
of sea ice behavior observed in nature, in terms of both geometry and interaction. These limitations can be
removed if computational efficiency is less than a central concern. Cylindrical or circular grain shape represen-
tations slightly reduce bulk shear strength relative to particles of irregular shape (e.g., Mair et al., 2002). In an
attempt to compensate for shape-induced weakening, the Coulomb frictional coefficient or tensile strength
can be increased in order to tend to the desired bulk mechanics. Furthermore, it may be beneficial to add
random variation to mechanical properties (e.g., 𝜇 and 𝜎c) if the range of variability is well understood. Ice
floe ridging is by crude means approximated by the bonding process described here, but it may be pos-
sible to improve the floe-scale mechanics for this process (e.g., Flato & Hibler, 1995; Lipscomb et al., 2007;
Rothrock, 1975), especially if thermodynamic balance and the important process of refreezing is determined
in conjunction with ocean and atmosphere state. Instead of attempting the impossible goal of including the
entire details of the complex sea ice system, we intend for this parameterization to be a useful first attempt at
making Lagrangian and ice floe scale methods available for coupled and global climate models. Lagrangian
formulations have inherent advantages to continuum sea ice models, especially for handling the discon-
tinuous behavior in shear zones and granular phenomena in the ice-marginal zone. We demonstrate that
simplifications in DEM formulations can reduce the algorithmic complexity while retaining similar shear zone
morphology and jamming behavior.
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