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Abstract

Glacier and ice sheet mass balance is sensitive to climate change. The geological
record has revealed that the polar ice sheets in the past responded rapidly to peri-
ods of warming, most likely caused by dynamic changes in ice flow patterns. The
rapid ice-sheet dynamical changes observed in the past may cause mass loss in the
near future to exceed current best estimates.

Ice flow in larger ice sheets focuses in fast-moving streams due to mechanical
non-linearity of ice. These ice streams often move at velocities several magnitudes
larger than surrounding ice and consequentially constitute a majority of the ice-
sheet mass flux. Understanding their physical behavior and sensitivity to changes
is of greatest importance for describing ice sheet configuration in the past, present
and future.

In-situ measurements and interpretations from the Pleistocene sedimentary
record have revealed that many glaciers move by deforming their sedimentary
beds. Several modern ice streams, in particular, move as plug flows due to basal
sediment deformation. An intense and long-winded discussion about the appro-
priate description for subglacial sediment mechanics followed this discovery, with
good reason. The mechanical behavior is likely very important for the evolution of
ice-sheet flow in a changing climate, and secondly directly influences the genesis
of subglacial landforms seen in previously glaciated areas.

Previous studies of subglacial sediment mechanics have relied on field and lab-
oratory experiments. The approach in this PhD project has been to understand
fundamental granular and fluid deformation, and apply the insights to improve the
understanding the processes governing mechanical stability of subglacial granular
materials. For this purpose a numerical formulation for granular and fluid me-
chanics has been implemented and applied. The computational approach allowed
for analysis in unsurpassed detail during progressive deformation.

The computational experiments show that granular deformation at glacial ve-
locities conforms to the rate-independent Mohr-Coulomb plasticity. In select cases,
however, viscous effects from meltwater deformation can provide additional rate-
dependent strengthening. The strengthening may act to stabilize patches of the de-
forming bed, triggering differential advection and hydrological exchange between
the bed and the ice-bed interface.

We also show that granular advection during shear deformation is dependent
on effective pressure, potentially causing unstable growth of bumps at the ice-bed
interface. The process creates wavy subglacial bumps similar to common geomor-
phological features in past glaciated areas, but the proposed instability mechanism
was until now incompatible with commonly accepted till rheology models.

Variation in pore-water pressure causes reorganization in the internal stress
network and leads to slow creeping deformation. The rate of creep is non-linearly
dependent on the applied stresses. Granular creep can explain slow glacial ve-
locities previously associated with elastic or viscous ice deformation. If a glacier
dominated by subglacial creep experiences prolonged events of strong surface melt
or increased driving stresses, the plastic strength limit can cause rapid acceleration
downslope due to imbalance of stresses.
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Dansk sammendrag (Summary in Danish)

Massebalancen af gletsjere og store iskapper er følsom overfor klimaforandringer.
Den geologiske stratigrafi har vist at indlandsisen på Antarktis, Grønland og de
tidligere ismasser i Nordeuropa og Nordamerika hurtigt reagerede på varmere
klimaforhold, hvilket højest sandsynligt skyldes ændringer i deres flydemønstre.
Disse hurtige ændringer kan forårsage afsmeltning af is i den nære fremtid der
overgår de bedste nuværende estimater.

Bevægelsen af is i større isskjolde fokuseres i hurtigt flydende isstrømme på
grund af mekanisk non-linearitet af is. Disse isstrømme bevæger sig flere magni-
tuder hurtigere end den omkringliggende is, og forårsager derfor hoveddelen af
istransporten fra områder med total akkumulation indlands til kystområder med
massetab til smeltning og kælving. Det er derfor nødvændigt at forstå deres fy-
siske forhold og følsomhed overfor ændringer for at kunne beskrive ismassernes
konfiguration i fortiden, nutiden og fremtiden. Målinger og tolkninger fra nutidige
og gletsjerafjelringer fra Pleistocæn har vist at mange gletsjere bevæger sig ved at
deformere deres sedimentære underlag, og flere nutidige isstrømme bevæger sig
udelukkende grundet underlagets deformation. Denne opdagelse startede en in-
tens debat omkring hvilken matematisk formulering der er bedst dækkende for
sedimenternes mekaniske egenskaber. Det er vigtigt at forstå disse deformation-
sprocesser da de potentielt er meget vigtig for udviklingen af indlandsis under
et skiftende klima og er grundlæggende for dannelsen af landskabstræk der ses i
tidligere glacierede områder.

Tidligere studer af gletsjersedimenternes mekanik har bygget på målinger i fel-
ten og ved laboratorieeksperimenter. Tilgangen har i dette PhD projekt været at
forsøge at forstå grundlæggende processer under deformation af granulære mate-
rialer og væsker, og at anvende den opnåede indsigt til at forstå hvilke processer
der styrer de mekaniske egenskaber af sedimentære lag under is. Til dette for-
mål er en numerisk formulering for granulær og væskemekanik implementeret og
anvendt. Denne tilgang har tilladt hidtil uovertruffent detaljerede analyser under
igangværende deformation.

Computereksperimenterne viser at granulær deformation ved glaciale
hastigheder følger den rateuafhængige Mohr-Coulomb plasticitet. I særlige tilfælde
viser det sig dog at viskøse effekter fra smeltevandet mellem sedimentkornene
kan forårsage forstærkning af sedimentet som er afhængig af deformationsraten.
Forstærkningen kan stabilisere områder i det sedimentære underlag hvilket ændrer
mønstret af sedimenttransport og driver vandudveksling mellem sediment og glet-
sjerunderlag. Vi viser også at granulær transport under deformation afhænger af
det effektive stress, hvilket kan skabe ustabil vækst af forhøjninger ved gletsjerun-
derlaget. Processen danner bølgede topografier som har fælles træk til hyppigt
observerede landskabsformer i tidligere glacierede områder. Hypotesen omkring
ustabil vækst har tidligere været inkompatibel med alment accepterede modeller
for sedimentmekanik. Ændringer i porevandstryk viser sig at drive reorganisering
i det interne stressnetværk og kan forårsage langsom krybende sedimentdeforma-
tion. Hastigheden af kryb afhænger af de påførte stresser. Granulært kryb kan
forklare langsomme ishastigheder som tidligere har været forbundet med elastisk
eller viskøs deformation af isen selv. Hvis en gletsjer, hvis bevægelse er domineret
af dette kryb, pludseligt oplever længere perioder med høj overfladeafsmeltning
eller større drivende stresser, kan den plastiske grænse for sedimentstyrke forår-
sage kraftig acceleration grundet uligevægt af systemets stresser.
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Chapter 1
Introduction

Changes in global ice volume through the Quaternary period have caused eustatic
sea level variations of up to 120 m (e.g. Ruddiman, 2007). A total melting of the
present global ice volume (33× 106 km3 or 69% of Earth’s freshwater volume) is
equivalent to approximately 70 m sea level rise (e.g. Benn and Evans, 2014). Re-
mote sensing developments have provided global coverage and observations with
high certainty, allowing detailed interpretations of the state of the cryosphere,
including ice sheet thicknesses and velocities (e.g. Tedesco, 2015). During the
last two decades, the Greenland and Antarctic ice sheets glaciers have been los-
ing mass, a trend contributing to the continuous eustatic sea level increase since
around 1900 (IPCC, 2013). Projections of climate predict continuous tempera-
ture increases in the coming century, fueling interest in understanding ice sheet
response and resultant sea level rise (e.g. Alley et al., 2005; Grinsted et al., 2010;
IPCC, 2013).

First-order response time of glacier ice to changes in forcing is generally slow
due to the high viscosity and heat capacity of ice. Dynamical changes in ice-sheet
flow patterns can, however, lead to configurations causing rapid melting of large
ice volumes, and the understanding of non-linear thresholds in the glacial systems
are consequentially key to understanding the involved sensitivities.

In the palaeo-record ice sheet response has often been non-linear and rapid
to changes in climate (e.g. Clark, 1994; Bentley, 1997; Overpeck et al., 2006).
This suggests that thresholds caused by dynamical ice flow changes are important
mechanisms to ice sheet configuration. The buttressing effect of ice shelves is an
example of a non-linear threshold in the glacial system. The disintegration of the
Larsen B ice shelf in 2002 caused immediate response in the tributary glaciers. The
resistance to flow from the ice shelf was suddenly lost and the tributary glaciers
accelerated (Rignot et al., 2004; Scambos et al., 2004; Wuite et al., 2015; De
Rydt et al., 2015). Other ice shelves on the Antarctic Peninsula are likely heading
towards collapse in the coming decades, as ice shelf thinning is accelerating due
to increased oceanic melting (e.g. Paolo et al., 2015).

Ice streams, defined as regions of fast flowing ice (Swithinbank, 1954; Bennett,
2003), are responsible for more than 90% of the Antarctic ice sheet mass flux (Mor-
gan et al., 1983; Rignot et al., 2011). Since seismic surveys (Alley et al., 1986;
Blankenship et al., 1986; Anandakrishnan et al., 1998; Anandakrishnan, 2003)
and borehole measurements (Engelhardt et al., 1990) revealed that the Antarctic
ice streams are moving on deformable and high-porosity sedimentary beds, the me-
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chanical implications to ice flow dynamics have been intensely debated. Drilling
campaigns have found that ice streams flow as plug flow, and shear deformation
primarily takes place in the subglacial till (Engelhardt and Kamb, 1998). Contro-
versial early field studies on a smaller glacier reported that till deforms in a rate-
dependent manner with a mildly non-linear viscosity (Boulton and Hindmarsh,
1987), strengthening with increased shearing velocities. Contrasting, laboratory
studies have described subglacial till as a mechanically highly non-linear material
(e.g. Kamb, 1991; Iverson et al., 1998; Tulaczyk et al., 2000a; Iverson, 2010), a
fact that carries the potential to cause large changes in behavior upon moderate
forcings. Viscous behavior, on the other hand, dampens variations in flow (e.g.
Kamb, 1991; Bennett, 2003; Tulaczyk, 2006).

Projections of ice flow response in a changing climate depend on mathemat-
ical ice sheet models that strive to produce best estimates of dynamical ice flow
changes. Analytical and numerical continuum mathematical modeling of highly
non-linear rheologies such as subglacial till is notoriously difficult (Schoof, 2006;
Schoof, 2010a), which has caused studies to often assume only mildly non-linear
viscous behavior for till (e.g. Alley et al., 1987b; Hindmarsh, 1998; Huybrechts
and Wolde, 1999; Pollard and DeConto, 2009; Joughin et al., 2014), leading pro-
jections that may ultimately fall short of describing dynamical changes caused by
thresholds in till strength. Recent developments in regularization techniques of
till plasticity allow numerical ice flow models to approximate a Mohr-Coulomb
parameterization of subglacial till mechanics (Schoof, 2006; Bueler and Brown,
2009; Schoof, 2010a; Bougamont et al., 2011), which proves the point that the
right numerical techniques allow for approximation of highly non-linear till me-
chanics in ice flow models.

In this PhD study subglacial till is approached as a granular material without
a priori assumptions about macroscopic rheology, with the overarching goal to
improve our understanding of its mechanical properties. Granular materials are
known for their ability to change phase (e.g. Jaeger and Nagel, 1992; Jaeger et al.,
1996; Herrmann, 2002), where each phase is characterized by distinct mechanical
properties (e.g. GDR-MiDi, 2004; Krimer et al., 2012). Some of the main questions
investigated in this PhD project are:

• Is the discrete element method (DEM) viable for numerical studies of sub-
glacial sediment deformation?

• What is the appropriate constitutive relation for granular materials deform-
ing under subglacial conditions?

• What controls the distribution of subglacial strain with depth, and what are
the implications for sediment flux and till continuity?

• What is the appropriate methodology to simulate coupled granular and fluid
dynamics in the subglacial bed?

• Do water pressure dynamics caused by subglacial deformation influence till
rheology and flux?

• How does variable input of meltwater influence stability of the subglacial
bed?
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The granular approach and numerical methodology has provided detailed insight
in the sediment internals and mechanics in various settings, allowing me to con-
sider the above questions in this thesis. The following chapter will provide back-
ground information on the scientific development on understanding and describing
till mechanics. The first included manuscript (chapter 4) considers the granular
dynamics alone, while the latter two incorporate influence of pore-fluid dynamics
(chapters 5 and 6). The above questions will be revisited in chapter 3, “Conclusions
and future aspects”.
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Chapter2
Subglacial deformation

of sediments

Many glacier bases are at the pressure melting point due to the weight of the over-
lying ice, frictional heating during deformation, and warming by the geothermal
heat flux. These processes allow for the presence of liquid water in the subglacial
environment. Thawed glacier beds often consist of melt-water saturated granular
materials, consisting of either reworked older sedimentary deposits or mobilized
products from erosion, collectively termed till (e.g. Clarke, 2005; Evans et al.,
2006; Cuffey and Paterson, 2010).

Glacial deformation of till has been described since the late 19th century
(McGee, 1894; MacClintock and Dreimanis, 1964), but was not widely recognized
as a significant glacier movement mechanism before the late 1970s. Field measure-
ments on an Icelandic glacier bed published in Boulton et al. (1974) and Boulton
and Jones (1979) for the first time clearly demonstrated that shearing of glacial
till could comprise a significant fraction of the observed surface movement, and
deformation was facilitated through high pore-water pressures. The large Pleis-
tocene ice sheets in the Northern Hemisphere flowed on areas of thick deposits
of unlithified sediments, spawning a lively discussion about glacier stability, sub-
glacial landform development and sediment transport, which continues to this day
(e.g. Boulton, 1986; Piotrowski, 1987; Alley et al., 1987b; Boyce and Eyles, 1991;
Clark, 1994; Hallet et al., 1996; Murray, 1997; Fowler, 2000; Piotrowski et al.,
2001; Schoof, 2007). The relevance of subglacial deformation to ice flow in the
present Antarctic and Greenland ice sheet beds was at the time of G. S. Boul-
ton;s results less than clear, however. Seismic surveys on the Antarctic ice sheet
(Whillans Ice Stream (previously named Ice Stream B) (WIS)) a few years later fi-
nally revealed that the 1 km thick ice stream flowed on water-saturated subglacial
sediment with a 5 m to 6 m thick upper layer of high porosity (Blankenship et al.,
1986; Alley et al., 1986). It was argued that the large porosities were indicative
of active deformation, and shear movement in these sediments contributed signif-
icantly to the overall flow. a few years later finally revealed that the 1 km thick ice
stream Palaeo ice-streaming was inferred from mega-scale glacial linear landforms
of highly sheared sediments, that were indicative of active sediment advection be-
neath fast moving ice (e.g. Denton and Hughes, 1981). The role of subglacial
sediment deformation processes to the flow of the Greenland ice sheet was uncer-
tain until recently, where radar mapping of the major North-East Greenland Ice
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Figure 2.1. Component-wise decomposition of stress vectors (T)
acting on the surfaces of a rectilinear orthogonal cube yields the
Cauchy stress tensor.

Stream revealed that it also flows on deformable sediments (Christianson et al.,
2014). Fast ice flow and areas of unlithified subglacial sediment seemed to be
closely related (e.g. Anandakrishnan et al., 1998; Tulaczyk et al., 1998).

In this chapter I will briefly describe relevant concepts from continuum me-
chanics before reviewing previous research into the mechanical behavior of till,
mostly adhering to chronological order. Finally I will relate the findings of my
study to the previous research. The review is based on the referenced literature
and the informative reviews by Murray (1997), Alley et al. (1997), Piotrowski et
al. (2001) Clarke (2005), Evans (2005), Kavanaugh and Clarke (2006), Evans et
al. (2006), Cuffey and Paterson (2010), Iverson (2010), Iverson and Zoet (2015),
and Flowers (2015).

2.1 Fundamentals of continuum modeling

Mathematical modeling of deformation requires description of stress and strain
and a constitutive relation linking the two. In mathematical models of glacier flow
the stresses driving deformation are most commonly inferred from local or regional
ice geometry, and response in ice deformation and geometry is the desired result
from the model. In the following, I will present the most important concepts of
continuum modeling based on Segall (2010) and Gerya (2010).

Stress

Stress is a vector T relative to a surface. The complete stress-state in a three-
dimensional body can be described by the second-order Cauchy stress tensor, which
decomposes each stress vector acting on three orthogonal and axis-parallel surfaces
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into components of the global coordinate system (Fig. 2.1):

σ =





σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33



 (2.1)

Rotation occurs if the stress tensor is asymmetric around the diagonal. The diag-
onal components (σ11,σ22,σ33) describe the orthogonal normal stresses, and the
mean value of normal stresses defines pressure: σkk/3 = −p. The off-diagonal
components in the stress tensor and normal stress isotropy denote the deviatoric
stress (τ):

σ = −pδ+τ (2.2)

where δ is the Kroneker delta, also referred to as the identity matrix:

δ =





1 0 0
0 1 0
0 0 1



 (2.3)

The deviatoric stress is also a second order tensor:

τ =





τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33



 (2.4)

Strain

Deformation takes place when two points in a material move relatively to each
other. The relative movement can be defined as gradients in velocity, which in
a three-dimensional Cartesian frame can be expressed by component-wise partial
derivatives in a second rank tensor:

∇v =





∂ v1/∂ x1 ∂ v1/∂ x2 ∂ v1/∂ x3
∂ v2/∂ x1 ∂ v2/∂ x2 ∂ v2/∂ x3
∂ v3/∂ x1 ∂ v3/∂ x2 ∂ v3/∂ x3



 (2.5)

If the material is not rotating the displacement gradient vector is symmetric:

∂ vi

∂ x j
=
∂ v j

∂ x i
, where i 6= j (2.6)

At small displacements gradients the components of the displacement gradi-
ent tensor can be associated with small strains. The infinitesimal strain tensor
describes strain from symmetric velocity gradients:

εi j ≡
1
2

�

∂ vi

∂ x j
+
∂ v j

∂ x i

�

(2.7)

The full strain tensor ε is:

ε=





ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33



 (2.8)
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2. Subglacial deformation of sediments

Simple shear, or isochoric plane deformation, takes place when only one velocity
gradient component has a non-zero value, and can be expressed as a single shear-
strain scalar γ in the strain tensor. For simple shear along the first dimension:

ε=





0 γ 0
γ 0 0
0 0 0



 (2.9)

or, alternatively, as strain rate:

ε̇=





0 γ̇ 0
γ̇ 0 0
0 0 0



 (2.10)

Simple shear is often assumed during subglacial deformation as glacier movement
occurs parallel to the ice-bed interface (IBI) and the IBI and lower boundary of the
till are assumed parallel.

Conservation laws

Continuum modeling relies on principles of conservation of material mass, lin-
ear and angular momentum and energy, which are fundamental laws of nature in
closed systems. The conservation laws are most commonly derived using Leibniz’s
theorem, and the reader is referred to continuum mechanics literature for com-
plete derivation of the balance laws (e.g. Griebel et al., 1998; Segall, 2010; Gerya,
2010).

Balance of mass

Conservation of mass can in Lagrangian vector form be written as

Dρ
Dt
+ρ∇ · v = 0 (2.11)

which implies that local changes in density (ρ) are balanced by divergence in the
flow field (∇· v). In many cases the materials are considered to be incompressible,
which means that their density is constant (Dρ/Dt = 0). That assumption reduces
the conservation equation to:

∇ · v = 0 (2.12)

Balance of linear momentum

In an isolated system the total momentum is conserved, which is useful for relating
stress and strain. Cauchy’s first law of motion states that the sum of all forces is
equal to the total body and surface force. It is a more general form of Newton’s
second law, and in its Lagrangian form reads:

ρ
Dv
Dt
= ρ f +∇ ·σ (2.13)

where f is a body force. If acceleration can be neglected the velocity change over
time is small (Dv/Dt ≈ 0), and the balance equation reduces to Stokes flow:

0= ρ f +∇ ·σ (2.14)
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Constitutive relations

Constitutive laws describe the relationship between stress and strain or, in other
words, how a material deforms due to internal or external forcings. Forward-in-
time modeling is done by inserting known stresses (σ) and body forces into the
momentum equation (Eq. 2.13 or 2.14) and solving the system of equations.

In the following section I will review the research efforts to establish a gen-
eral constitutive relation for till rheology, and expand on the consequences for ice
sheet stability, subglacial sediment transport, and channelized flow of subglacial
meltwater.

2.2 Deduction of a rheological model for till

Field observations proved that sediment deformation in many cases is an important
constituent of glacier flow (e.g. Boulton et al., 1974; Boulton and Jones, 1979).
This realization required rethinking of the approach to mathematical modeling of
glaciers, as previous mathematical models had considered glacier flow on stable
hard-rock beds only (e.g. Weertman, 1957; Lliboutry, 1968; Kamb, 1970; Iken,
1981; Fowler, 1981), and initiated a continuing discussion about the appropriate
constitutive relation applicable to till rheology. The discussion has mostly centered
on deducting the relationship between shear stress τ12 (hereafter denoted τ) and
shear-strain rate γ̇, which is required for mathematical modeling of sediment de-
formation.

The simplest proposed rheological law for shear deformation in subglacial beds
is the linear (Newtonian) viscous constitutive relation:

γ̇=
1

2ν
τ (2.15)

where ν is the till viscosity. Due to its simplicity and lack of better constrained
formulations, this model was popular in early mathematical models including till
deformation. The law is also similar to the widely used sliding law proposed by
Weertman (1957); u = Cτn. Viscosity values for Eq. 2.15 constrained from mea-
surements in boreholes span a variety of values (Murray, 1997), from 109 Pa s in the
subglacial till of Trapridge Glacier, Yukon Territory, Canada, (Fischer and Clarke,
1994) to 1012 Pa s in the frozen bed of Bakaninbreen, Svalbard (Porter and Murray,
2001). Laboratory triaxial tests on Lake Michigan Lobe till, Laurentide Ice Sheet,
yielded a viscosity on the order of 109 Pa s to 1011 Pa s (Jenson et al., 1996), but
the methodology surrounding these results is not clear.

Boulton and Hindmarsh (1987) argued that their measurements of shear stress
(τ) and strain rate (γ̇) data from the subglacial bed of Breidamerkurjökull, Iceland,
were more adequately explained by either a non-linear viscous flow law or a Bing-
ham viscoplastic model. The proposed non-linear flow law was identical to the
empirical soft-bed sliding law proposed by Budd et al. (1979) and of the form:

γ̇= a
τn

N m
(2.16)

The parameter a was termed the softness parameter or rate factor and scales to
the inverse value of shear viscosity. The viscosity can in the above formulation be
interpreted as being dependent on effective normal stress (N). The best fit was
achieved with a = 3.99, n= 1.33 and m= 1.8 with a correlation coefficient value

9



2. Subglacial deformation of sediments

of 0.987. Stress exponent values of n = 1 and m = 0 correspond to a Newtonian
(linear) fluid. The effective pressure dependence on viscosity in the constitutive
relation causes increased strain rates due to till deformation during high pore-
water pressure events, consistent with observations of fundamental proportionality
between glacier surface melting rates and flow flow velocities (e.g. Willis, 1995;
Zwally et al., 2002).

Boulton and Hindmarsh (1987) alternatively proposed a non-linear Bingham
fluid model:

γ̇= a
[τ−τc]n+

N m
(2.17)

The [τ−τc]+ notation means that negative values of τ−τc yield zero. The yield
strength (τc) is determined by the Mohr-Coulomb criterion (Terzaghi, 1943):

τc = C +µN (2.18)

C is the material cohesion and µ is the internal friction coefficient1. The values
fitted by Boulton and Hindmarsh (1987) of a = 7.62, n = 0.625, m = 1.25, µ =
0.625 and C = 3.75 kPa resulted in a slightly lower correlation coefficient of 0.986.

Equations 2.16 and 2.17 can be rearranged and generalized to highlight the as-
sumed rate-dependence on till strength, with a yield strength term for the Bingham
model:

τ=
�

γ̇N m

a

�1/n

+ C +µN
︸ ︷︷ ︸

Yield strength

(2.19)

Both rheological models are with the fitted values only mildly non-linear, and pro-
duce results similar to the linear model (Eq. 2.15) at strain rates larger than ∼7
a−1 (Fig. 2.2).

The methodology surrounding the stress measurements by Boulton and Hind-
marsh (1987) was not accounted for in the paper, and concerns were raised about
the stress field in the ice-marginal area of sampling (e.g. Hooke et al., 1997). Sub-
sequent studies of till rheology, presented in the following, indicated that it was
more appropriate to use a highly non-linear constitutive relation, and the validity
of the results from Boulton and Hindmarsh (1987) are today highly questioned.
Clarke (1987) proposed a slightly different Bingham-type flow law from theoreti-
cal considerations, with n= 1, m= 0, and a different parameterization of effective
pressure N .

A few years later Kamb (1991) presented laboratory studies on a till sample
recovered through a borehole from beneath WIS at the Upstream B (UpB) site.
The till sample was fine grained and weak, with a shear strength of only a few
kPa in the state it was recovered (Kamb, 1991; Kamb, 2001). B. Kamb performed
both stress and rate-controlled direct shear tests, and concluded that the till sam-
ple deformed as a highly non-linear Mohr-Coulomb material (Eq. 2.18), a result
directly contrasting the previous interpretation by Boulton and Hindmarsh (1987).
In the stress-controlled experiments B. Kamb noted a small but declining shear dis-
placement when the sample was stressed with less than the plastic yield strength.
As shear stress exceeded the shear strength, movement accelerated as the mate-
rial was unable to sustain stress balance. The general relationship between stress

1The angle of internal friction (φ) relates to the internal friction by µ= tanφ
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Figure 2.2. Stress-strain behavior of various proposed rheological
models for till. The non-linear viscous law, the Bingham flow law,
and the Mohr-Coulomb strength were plotted using fitted values
by Boulton and Hindmarsh (1987) and a effective normal stress
of N = 20 kPa.

and strain rates in perfect plastic materials is 0 beneath the yield stress and un-
constrained by the material above it, as friction provided by the Mohr-Coulomb
material is insufficient to obtain stress balance:

γ̇=

¨

0, if τ < C +µN
> 0, otherwise

(2.20)

B. Kamb noted that the non-linearity in strength had possible implications for
ice stream dynamics, and that the low strength likely caused flow-limiting friction
for Whillans Ice Stream to be supplied elsewhere.

The diversity of field data on till behavior was expanded by campaigns on
smaller mountain glaciers, accompanied with significant advances in instrumenta-
tion (Blake et al., 1992). Blake et al. (1994) presented first results of subglacial
deformation beneath Trapridge Glacier, Canada, and noted that subglacial move-
ment in and over the till bed contributed more than half the observed surface
velocity. Glacier velocities varied diurnally, a finding that linked observations on
surface melt with subglacial movement through variations in basal water pressure.
Melt-water modulated the mechanical coupling between ice and bed. Observed
stick-slip behavior could be accounted for by frictional sliding between idealized
elastic blocks of ice and sediment (Fischer and Clarke, 1997), demonstrating the
importance of till elasticity on shorter time scales.

Iverson et al. (1995) and Hooke et al. (1997) investigated basal mechanics
with tiltmeters, pressure transducers, and various till strength instruments, em-
placed through boreholes in the basal till beneath Storglaciären, Sweden. Hooke
et al. (1997) demonstrated that in-situ till behavior adhered to the plastic Mohr-
Coulomb constitutive relation (Eq. 2.18), and noted a very slight increase in strength

11



2. Subglacial deformation of sediments

with increasing rates:

γ̇=

¨

0, if τ < C +µN

βγ̇0ek τ
τ0 , otherwise

(2.21)

where β = ek, and γ̇0 and τ0 are reference shear-strain rate and shear stress values,
respectively. Both publications noted that the effect of water pressure modulations
is two fold; till strength decreases with increasing water pressure as effective stress
decreases. Secondly, the mechanical coupling between glacier and its bed varies
with effective pressure. Decreases in contact area during increasing basal water
pressures cause glacier acceleration, and the proportion of frictional resistance
provided elsewhere than the bed increases.

In general, in-situ observations on subglacial processes through boreholes allow
detailed studies of strain and the influence of pore-water pressure dynamics, but
offer little knowledge and control over e.g. the driving stress τ. The direct shear
measurements used in the laboratory by Kamb (1991) was limited to relatively
low values of shear strain (γ). The direct shear apparatus works by breaking a
cylindrical sample perpendicularly to its length axis, causing boundary friction to
increase and sample contact area to decrease with increasing shear strain (e.g.
Bowles, 1992).

Annular ring-shear experiments are not bound by these constraints in control
over stress and shear strain, and the ring-shear studies by N. R. Iverson and S. Tu-
laczyk have provided both comprehensive and detailed insight into till mechanics.
Iverson et al. (1997a) and Iverson et al. (1998) demonstrated that till strength,
both for coarse and clay rich specimens, is mostly independent on deformation
rate, unlike the rate dependence in the viscous models (Eq. 2.19), and instead de-
termined by effective normal stress, as previously concluded by Kamb (1991) and
Hooke et al. (1997). The coarse till had a slightly higher angle of internal friction,
and the clay-rich till had a slightly larger amount of cohesion (Iverson et al., 1998).

Tulaczyk et al. (2000a) revisited the till samples from the UpB site previously
described by Kamb (1991) with laboratory tests of uniaxial compression, triaxial
deformation and rotational ring-shear tests. The latter methodology proved that
the till from the UpB site, once in the critical failure state, had a constant ulti-
mate shear strength τu regardless of shear strain. Results from the triaxial tests
concluded that the till shear strength, like the previous till samples (Kamb, 1991;
Iverson et al., 1997a), was adequately described by the Mohr-Coulomb constitutive
relation (Eq. 2.18) and that strength was practically independent of shear strain
and shear-strain rate. Assuming that subglacial till remained in the critical state,
S. Tulaczyk realized that effective pressure N and shear strength τ was directly
proportional to the till porosity (φ). This allowed him to formulate a relationship
which expresses shear strength as a function of the void ratio e = 1−φ, which he
called the undrained plastic-bed model (Tulaczyk et al., 2000b):

τ= a exp(−be) (2.22)

where a and b are two positive empirical constants. The evolution of porosity
can be coupled with local or regional models of subglacial hydrology (e.g. Boug-
amont et al., 2011; Wel et al., 2013), and/or water supply and removal by thaw-
freeze processes (Christoffersen and Tulaczyk, 2003a; Christoffersen and Tulaczyk,
2003b; Bougamont et al., 2011).
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2.2. Deduction of a rheological model for till

The nearly plastic rheological description of subglacial till had by the late 1990s
gained wide empirical support, but was not yet widely accepted. This was perhaps
caused by the deadlock a rate-independent description introduced for the tradi-
tional approach by mathematical modelers. The proposed relationships based on
Mohr-Coulomb plasticity did not offer a straight-forward relation to subglacial slid-
ing velocities.

It was argued that the proposed plastic till rheology was inappropriate for de-
scribing subglacial mechanics beneath ice streams, as the limited strength a Mohr-
Coulomb bed can provide was inconsistent with the stability of the West Antarc-
tic ice streams (Hindmarsh, 1998). Tulaczyk et al. (2001) argued that the flow-
limiting friction in these cases was provided by side boundaries, e.g. ice-stream
margins, and highlighted how ice shelves with zero basal friction were a clear-cut
example of such a balance between driving stress and lateral friction.

Further concerns were raised by Hindmarsh (1997) and Fowler (2003), who
argued that the plastic rheology observed in small spatial-scale laboratory devices
and field studies not correctly described larger-scale behavior of subglacial beds.
Their idea was that the integrated response of many small-scale plastic failures may
produce large-scale viscous behavior. Tulaczyk (2006) countered the argument of
scale dependence on rheology by demonstrating that the stick-slip behavior of the
∼10 000 km2 ice plain at the mouth of Whillans Ice Stream (e.g. Bindschadler et
al., 2003) conformed to the predicted behavior of a nearly plastic bed, forced by a
driving stress fluctuating around the Mohr-Coulomb plastic yield strength.

More field data collected under Trapridge Glacier was given a rigorous anal-
ysis by Kavanaugh and Clarke (2006), who compared the theoretical mechanical
response of several proposed rheological models against their field measurements.
The analysis included diffusion of pore-water pressure, which influences deforma-
tion in all rheologies dependent on effective pressure. They found the best correla-
tion between modeled response and field measurements with the Coulomb-plastic
model.

Borehole campaigns mostly yield point measurements and no control over till
composition. Larger-scale in-situ experiments were performed the Svartisen Sub-
glacial Laboratory, which through a system of tunnels gives direct access to the
subglacial bed beneath Engabreen, an outlet glacier of Svartisen, Norway. Iverson
et al. (2007) placed an heavily instrumented synthetic till prism beneath the ice,
and controlled pore-water pressure with a pump. The ice entrained the uppermost
sediment by regelation infiltration. Till shear strength behaved according to the
Mohr-Coulomb criterion (Eq. 2.18), and movement happened through slip at the
pressure-melting point isothermal for low water pressures, where till strength ex-
ceeded subglacial shear stress. Pervasive deformation of the till took place at high
water pressures which weakened the till.

Recent technological developments have allowed for year-long in situ observa-
tions by wireless probes placed in the subglacial bed (Hart et al., 2006; Martinez et
al., 2009). The probes include a variety of sensors, including recording of stresses
on the 13 cm long pill-shaped enclosure, water pressure, tilt and electrical resis-
tance. Hart et al. (2009) and Hart et al. (2011) employed these probes under
the Norwegian Brikdalsbreen through boreholes. They flushed away some of the
basal till, inserted the probes into this space, and let the till close around them.
From the measured data they argued that the till rheology was time-variable, al-
tering between elastic and viscous deformation governed by pore-water pressure.
The high-water pressure periods were associated with rate-dependent strength and
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2. Subglacial deformation of sediments

continuous rotation (Jeffery, 1922). Hart et al. (2011) reported a best fit between
case-stress data and tilt rates by a Bingham viscoplastic flow law with a stress ex-
ponent value of 1, i.e. a linear viscosity above the yield strength. They did not find
a consistent relationship between effective pressure and shear strain, which they
somewhat puzzling argue is crucial for a plastic till rheology. The study implic-
itly assumes that driving glacier stresses are supported only by basal strength, as
local stresses are thought to directly influence local strain rates. Previous studies
argue that the resistance provided by soft glacier beds in many cases is too weak
to support the driving stresses (e.g. Kamb, 1991; Iverson et al., 1995; Hooke et al.,
1997; Joughin et al., 2009). The reported linear relationship between strain rate
and effective stress may not represent local conditions, but instead result from flow
variations of the glacier as a whole in response to annual and daily variations in
surface melt.

Basal movement on a Mohr-Coulomb plastic bed

Progress in the mathematical description of hard limits in subglacial strength was
made by Schoof (2005), who proposed a hard-bed sliding law including cavitation:

f =
� u

u+Λ

�p−1
(2.23)

u is the basal sliding rate, f is a dimensionless coefficient of friction and a dimen-
sionless parameter Λ scales with bed roughness. Frictional resistance is limited
with increasing sliding velocities, as cavities grow and the contact surface area
between ice and bed is reduced, a limit known as Iken’s bound (Fowler, 1986;
Fowler, 1987; Schoof, 2005; Zoet and Iverson, 2015). The degree of non-linearity
is determined by the value p > 1. Schoof (2010a) demonstrated that a law of the
same type as the hard-bed sliding law with cavitation is suitable for mathemati-
cally describing Coulomb frictional sliding, assuming that the entire basal domain
is not exceeding the yield stress. The regularized form of the Coulomb friction slid-
ing law more closely than previous efforts approximates the rate-independence of
Mohr-Coulomb plasticity, while retaining the one-to-one correlation between rate
and stress. The regularized friction function is due to its continuousness simpler
to handle by analytical and numerical methods:

f =
up

u2 +Λ2
(2.24)

The expression can be used to scale the yield strength predicted by the Mohr-
Coulomb equation (Eq. 2.18):

τ= (C +µN)
up

u2 +Λ2
(2.25)

The equation intersects the (u,τ) = (0,0) point, but rapidly grows to asymptoti-
cally approach the Mohr-Coulomb plastic limit (Fig. 2.2). The value of the dimen-
sionless parameter Λ describes the growth rate or non-linearity at low strain rates
(Fig. 2.2).

Constraining basal rheology from ice flow inversion

Detailed GPS records revealed that several Antarctic marine-terminating ice streams
flow with surface velocities influenced by the tidal stage (e.g. Bindschadler et al.,
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2.2. Deduction of a rheological model for till

2003; Gudmundsson, 2006; King et al., 2011). The observed correlation between
tidal forcing and flow response is non-linear, with the stick-slip behavior on the
downstream ice plain of WIS as the most notable example. Velocities here vary
three orders of magnitude during a tidal cycle (Bindschadler et al., 2003; Tulaczyk,
2006). Bindschadler Ice Stream, also a tributary to the Ross Ice Shelf, West Antarc-
tica, shows velocity variations by a factor of three (Anandakrishnan et al., 2003).
The surface velocity of the more narrow Rutford Ice Stream, West Antarctica, which
flows into the Filchner-Ronne Ice Shelf varies by 10 to 20% (Gudmundsson, 2006).
Several studies noted that investigations into the flow dynamics may yield infor-
mation about the subglacial sediment rheology on a large spatial scale.

It is commonly assumed that tidal flexure of the ice shelf-ice stream system
cause variations in the ice stream basal stress (e.g. Bindschadler et al., 2003; Gud-
mundsson, 2007; King et al., 2011), typically reducing to the form:

τ= τ̄+ Kρw gh(t) (2.26)

where τ̄ is the mean basal shear stress, K is a scaling factor, ρw is ocean water
density, and h(t) is the tidal elevation at time t. The inferred evolution of stresses
was coupled to a sliding formulation similar to the hard-bed sliding law proposed
by Weertman (1957) or a pressure-independent variant of the non-linear sliding
law proposed by Boulton and Hindmarsh (1987) (Eq. 2.16):

u= cτn (2.27)

u is basal sliding velocity, which for the Antarctic ice streams moving by plug flow
corresponds to their surface velocity. A stress exponent (n) of 1 denotes linear
(Newtonian) viscosity, while n=∞ corresponds to perfect plastic behavior.

Studies of stress balance showed that the driving stresses on Whillans ice plain,
downstream of Whillans Ice Stream, were balanced by local basal friction (Joughin
et al., 2004). Tulaczyk (2006) showed that the stick-slip behavior of WIS follows
a highly non-linear rheology with a stress exponent value between 9.4 and 13.3.

Gudmundsson (2007) presented a conceptual model for Rutford Ice Stream.
Inferred changes in driving stress, coupled with a sliding law of the above type
with n = 3, produced strikingly similar displacements relative to GPS data. King
et al. (2010) confirmed the stress exponent value of 3 at the same ice stream in
an expanded analytical modeling analysis. King et al. (2011) performed the same
analysis for GPS data collected near the grounding line on Larsen C ice shelf on the
Antarctic peninsula, and found a best fit with a stress exponent value of 2.94. The
models did not include the viscoelastic effects of the ice stream itself, however. This
shortcoming was handled by Gudmundsson (2011), who developed a numerical
flow-band (2d) model for the system. He reported less certainty in determining a
specific stress exponent value than in previous studies, but noted that moderately
large values in the range of 2 to 10 replicated the main qualitative features of the
displacement record at Rutford Ice Stream.

The attention was turned to Bindschadler Ice Stream by Walker et al. (2012)
who, akin to the work by Gudmundsson (2011), employed a numerical viscoelas-
tic flowline model for investigating the basal sliding properties. Depending on
the elastic modulus in the ice, they obtained best fits between surface displace-
ment data and model behavior with stress exponent values between 10 and 15,
more closely resembling the large-scale near-plastic behavior for WIS (Tulaczyk,
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2. Subglacial deformation of sediments

2006). Rosier et al. (2014) used a three-dimensional full-Stokes2 viscoelastic ice
flow model in a geometry similar to Rutford Ice Stream, and showed that inclu-
sion of horizontal limits such as ice stream shear margins and the grounding line
did not alter previous estimates of the stress exponent value of 3. Goldberg et al.
(2014) used a two-dimensional plan-view viscoelastic numerical model with a reg-
ularized Mohr-Coulomb formulation for basal friction (Eq. 2.25), shear margins,
and a grounding line. When investigating stick-slip behavior on Whillans Ice Plain
they confirmed that the large-magnitude variation was caused by highly non-linear
basal strength.

In both Thompson et al. (2014) and Rosier et al. (2015) three-dimensional vis-
coelastic ice flow models are employed to study transmission of tidal perturbations
inland through the ice. Thompson et al. (2014) were unable to reproduce the ob-
served flow dynamics of Rutford Ice Stream reported by Gudmundsson (2011) by
ice flexure alone. Tidal perturbations of the stress field in the ice undergoes rapid
damping up-ice, causing tidal variations in stress unlikely to be sufficient to signif-
icantly alter ice flow velocities. Instead they hypothesized that the tidal variation
in water pressure at the grounding line is diffusing up under the ice through water
flow at the ice-bed interface (IBI). This hypothesis requires large hydraulic conduc-
tivity usually associated with channelized subglacial water flow. Tidal variations
in pore-water pressure alter the effective stress instead of shear stresses (Eq. 2.26),
and previous studies had used a sliding law independent of normal stress (Gud-
mundsson, 2007; Gudmundsson, 2011; Rosier et al., 2014). Rosier et al. (2015)
employed a pressure-dependent non-linear viscous sliding law like proposed by
Boulton and Hindmarsh (1987) (Eq. 2.16), and included a subglacial model of hy-
draulic diffusion. They reported a best fit against Rutford Ice Stream data with a
stress exponent value of 3.

The applicability of GPS measurements to deduct basal rheology is an ongoing
discussion. I note that systems responding to perturbations in stress to a relatively
low power of 3 may to a greater extent contain ice-deformational resistance to flow
in their stress balance, as a stress-exponent value of around 3 is often measured
for the rheology of polycrystalline ice (e.g. Glen, 1955; Hooke, 1981). Precursive
inversion of the system stress balance must be performed to assess whether ice
flow dynamics in a given location primarily reveal insight into rheology of basal,
marginal or external process. Further investigation into subglacial hydrology in
these environments is required, since flow oscillations seem to be strongly con-
nected to hydrological changes (Thompson et al., 2014; Rosier et al., 2015).

Insight into granular rheology from computational experiments

The discrete element method (DEM) methodology adopted in my studies has sev-
eral simplifications with regards to describing grain shape, grain size, grain-size
distribution, and spatial scale, mainly caused by severe computational expenses.
The method is, however, widely applied and considered the de facto standard for
simulating granular materials (e.g. Hinrichsen and Wolf, 2004; Radjaï and Dubois,
2011). Granular material-specific processes, such as phase transitions and shear in-
duced dilation and weakening are lacking adequate continuum-formulations (e.g.
Gennes, 1999). The granular model developed for our studies has allowed us to

2Referring to a flow solution including the full nine-component Cauchy stress tensor (Eq. 2.1) in
the momentum equation for steady state flow (Eq. 2.14).
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2.2. Deduction of a rheological model for till

6 Damsgaard and others: DEM modeling of subglacial sediment deformation

RESULTS

The laboratory quartz sand is first sheared at three di↵er-

ent velocities (u = 1.67 ⇥ 10�6 m s�1, 8.3 ⇥ 10�6 m s�1 and

1.67 ⇥ 10�5 m s�1) in order to constrain the relationship be-

tween the shear strength and a range of strain rates. Since

no significant di↵erence in shear strength is observed, the hy-

pothesis of a viscous component in the rheology is discarded,

and subsequent shear experiments are performed only for u

= 1.67 ⇥ 10�5 m s�1 (corresponding to 1.0 mm min�1).

For the numerical DEM experiments, the shearing velocity

is progressively lowered from 0.0369 m s�1 to 0.003 69 m s�1,

until the results converged and the material deformed in a

pseudo-static style without noticeable e↵ects of particle inertia.

Below these velocities, which exceed the deformation rate

under glaciers by several orders of magnitude, the mechanical

behaviour of the numerical model is thus also rate independent.

Table 1 shows the values of the micromechanical- and ge-

ometrical parameters used in the DEM shear experiments,

which gave a reasonable result in the Mohr-Coulomb fail-

ure analysis. During the pre-shear consolidation phases, the

laboratory- and numerical materials compact with exponen-

tially decaying volumetric strain rates, as typical in granular

materials, with reversible elastic- and permanent plastic de-

formation components (Nedderman, 1992) and the length of

the consolidation period influencing the shear strength of the

material (Scholz, 1998; Rathbun and others, 2008). In figure

5, stress- and dilation data from shear experiments with a

normal stress of 80 kPa to 85 kPa on the three laboratory ma-

terials and the numerical material are shown for comparative

purposes.

For all the materials tested, the peak shear strength (⌧p)

is reaches at a low level of shear strain (�). The quartz sand

reaches it’s peak shear strength at a � = 0.24, the glass beads

peaks at � = 0.1, while the strength of the numerical material

peaks at � = 0.04. The glacial till reaches it’s peak shear

strength at � = 0.01.

The fluctuations in the glass bead shear stress data after

the peak shear strength value are interpreted as an e↵ect of

high amounts of grain crushing, which is audible outside the

ring-shear apparatus during the experiment. The glass beads

are mechanically weaker than the monocrystals of the quartz

sand, and thus more likely to fracture.

Figure 6 shows the collective results of the failure analysis.

Fitting eq. 8 to the peak- and ultimate failure stress data

results in �p = 45�, Cp = 3.7 kPa, �u = 44� and Cu = 2.4 kPa

for the quartz sand, �p = 37�, Cp = 1.8 kPa, �u = 35�, Cu

= 1.5 kPa for the glass beads, �p = 32�, Cp = 1.2 kPa, �u

= 22�, Cu = 0.51 kPa for the numerical DEM material, and

�p = 18�, Cp = 3.1 kPa, �u = 18�, Cu = 0.69 kPa for the

till. The linear correlations confirm that the tested materials

deform according to the Mohr-Coulomb theory.

The positions of the strain markers are used for mapping

the shear zones in the glass beads and the quartz sand. This

is done for �0 = 85 kPa, where the shear zone is determined

to be approximately 4 mm thick in the glass beads, and 6 mm

thick in the quartz sand (fig. 7). The material is sampled

above, inside, and below the shear zone, and the grain size

distributions are analyzed using a laser di↵raction instrument.

No significant di↵erences in the grain size distributions are

found between the three samples in each material. During

localized deformation in the ring-shear, the mixing zone is

located vertically near the shearing gap (fig. 7). In the numer-
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Fig. 5: Shear stress (upper) and dilation (lower) as a function

of shear strain, recorded during the laboratory shear tests

on quartz sand (QS), glass beads (GB), glacial till, and the

numerical discrete element method material (DEM). The

deviatoric normal stress is �0 = 80 kPa for all tests, except
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normalized to the same �0 value.

0

10

20

30

40

50

60

70
⌧ p

,
[k

P
a
]

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140

⌧ u
,
[k

P
a
]

Deviatoric normal stress, �0, [kPa]

QS

GB

DEM

Till

Fig. 6: Mohr-Coulomb failure analysis of three laboratory

granular materials and one numerical material. Upper: Peak

shear strength values (⌧p). Lower: Ultimate shear strength
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Figure 2.3. Mohr-Coulomb failure analysis of three laboratory
granular materials (quartz sand, glass beads, and a till) and one
numerical material (DEM). The Mohr-Coulomb constitutive re-
lation (Eq. 2.18) was fitted to peak (τp) and critical state (τu)
strengths. Figure also on p. 54.

test granular response to various forcings and draw parallels to subglacial pro-
cesses.

In paper 1 of this thesis (Ch. 4 and Damsgaard et al. (2013)) we demonstrate
that two simple granular materials, a numerically simulated granular material,
and a till all yield according to the Mohr-Coulomb criterion (Fig. 4.14) and in-
dependent of deformation rate at glacial velocities. When the material is in a
consolidated pre-failure state, the deformational strength evolves with early shear
strain. Early deformation is associated with a mostly linear increase to a peak
shear strength. Subsequent strain in the critical state is characterized by a some-
what lower strength when the shear zone is fully developed and weakened due to
increased porosity (Fig. 4.4, p. 44). It is unclear at present if the sediment beneath
variable moving ice consolidates to the pre-failure state during slow flow events
(Iverson, 2010), but stagnant periods may cause the bed to significantly harden.
Subsequent deformation events will have to overcome the peak strength before
the bed weakens to the critical state value.

We investigated the influence of pore water on granular rheology in paper 2
(Ch. 5). We showed that in a few select cases, the viscosity of water contributes
to the yield strength from the granular phase as an additional strengthening pro-
cess caused by dilation. The dilatant hardening is dependent on shear rate and
diminishes after the sediment ends its volumetric expansion in the critical state.
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Figure 2.4. Non-linear viscous behavior during pre-failure creep
in numerical deformation experiments. Figure also on p. 89.

The behavior is consistent with the theoretical considerations by Iverson (2010),
and demonstrates that the hardening is caused by micromechanical processes of
contact strengthening due to gradients in pore-water pressure.

In paper 3 (Ch. 6) we demonstrate that granular materials can display slow
creep beneath the Mohr-Coulomb yield strength due to changes in internal stresses,
which previously was not considered in Mohr-Coulomb models (Eq. 2.20 and 2.21).
We demonstrate how changes in effective stress caused by variations in pore-water
pressure cause reorientation in the orientation of maximum compressive stress.
The stress-supporting contact network in the sediment consists of a finite number
of grain contacts with variable orientation. If the normal or shear stress changes,
a fraction of the contacts will fail and grain pairs slide on their mutual contact in-
terface. These failures will increase loading on the remaining contacts and cause
slight deformation until a new stable packing is obtained. The displacement is
larger for low effective stresses as the lower packing density allows for larger grain
displacements (Fig. 2.4). The rate dependence on stress disappears when the sed-
iment is forced above the Mohr-Coulomb yield stress. The relationship between
strain rate and stress during creep can be fitted with a non-linear viscous relation-
ship of the form:

γ̇=
� τ

N

�n
(2.28)

where the stress exponent n in the numerical experiments depends on consoli-
dation state and pore-water perturbation amplitude. In our experiments we fit
exponent values ranging from 6 to 11, which depicts significantly more non-linear
behavior than the stress exponent values fitted by Boulton and Hindmarsh (1987).
The viscoplastic Bingham model (Eq. 2.17) depicts zero deformation beneath the
plastic yield strength, and rate-dependent non-linear strengthening above the plas-
tic strength.

The proposed flow for creep, combined with the rate-dependence above the
yield stress, law most closely resembles the regularized Mohr-Coulomb law by
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2.3. Distribution of strain in the subglacial bed

Schoof (2010a). Velocities are small beneath the yield stress and stresses are lim-
ited by the Mohr-Coulomb stress at larger driving stresses.

The constitutive relation for creep presented above fits the results from our
computational experiments, but I note that further research on various materials
is required for corroborating the creep behavior in sediments forced with variable
pore-fluid pressure. Slow creep is known from landslides and hillslopes, which
can display downslope movement under the angle of repose due to transient stress
perturbations (Terzaghi, 1951; Carson and Kirkby, 1972; Iverson, 1986; Iverson
and Major, 1987; Roering et al., 2001; Malet et al., 2002; Schulz et al., 2009;
Handwerger et al., 2015). The results produced here may be applicable to a wider
range of geological processes, pending further investigation.

2.3 Distribution of strain in the subglacial bed

The type of constitutive relation for the subglacial sediment directly influences the
distribution of strain in the subglacial bed, which in turn determines the transport
of till (Fig. 2.5). The transient evolution of till bed thickness by advection can be
expressed through the Exner equation for sediment mass balance (Exner, 1925;
Kyrke-Smith and Fowler, 2014), derived from the advection equation. I expanded
the relation with a term Ṡ denoting the rate of local sediment deposition or erosion
by glacier base melt-out or freeze-on:

∂ H
∂ t
=

1
1−φ

�∇ · q + Ṡ
�

(2.29)

H is the bed surface elevation, φ is the porosity and q is the flux of till. The
implications of subglacial deformation depth upon sediment mass balance was
intensely discussed as proposed transport rates seemed to exceed realistic sediment
production rates (e.g Cuffey and Alley, 1996; Alley et al., 1997; Alley, 2000).

A material behaving as a linear viscous fluid deforms at low Reynolds numbers
as a laminar flow with constant strain rate through its entire thickness (e.g. Alley
et al., 1987a). In the Bingham flow model (Eq. 2.17) deformation occurs at all
depths where shear stress exceeds shear strength. The shape of the curve above
this limit is determined by the stress exponent (e.g. Alley, 1989b). Deformation in
idealized perfect plastic materials focuses in a single plane following the weakest
strength (Alley, 1989b).

The 5 to 6 m thick porous zones observed with seismic and in-situ borehole
measurements were interpreted as indicative of deep active deformation (Blanken-
ship et al., 1986; Alley et al., 1986; Engelhardt et al., 1990), and, in turn, support-
ing a viscous notation of till rheology (e.g. Alley et al., 1989b; Boulton et al., 2001).
Later in-situ measurements at the UpB site on WIS by Engelhardt and Kamb (1998)
disputed this interpretation, as deformation between the IBI and the upper 3 cm
accounted for 83% of the total displacement. This observation was seemingly in
better agreement with laboratory and most field data of a plastic till rheology.

Modeling work by Beget (1986) and Beget (1987) demonstrated that till rheol-
ogy likely influenced Pleistocene glacier profiles and flow. Low till strength resulted
in low surface slopes as seen on contemporary West Antarctic ice streams.

Assuming a linear-viscous rheology, Alley et al. (1989a) estimated that the
subglacial transport rate beneath WIS is 102 to 103 m3 a−1 per meter width at
the grounding line, equivalent to an erosion rate of 0.4 mm a−1 over the entire
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drainage basin (Murray, 1997). This value lies within the inferred erosion rates
in the Northern Hemisphere during the Pleistocene glaciations but unlikely for
the long-glaciated Antarctic continent (Hallet et al., 1996). MacAyeal (1992) as-
sumed a linear-viscous till rheology for subglacial till in a numerical model for West
Antarctic ice sheet flow, and argued that build-up of weak subglacial till layers can
destabilize the ice sheet. Alley (1991) discussed that advection in the subglacial
bed may explain the widespread till sheets at the southern margin of the Lauren-
tide ice sheet. Jenson et al. (1995) computed till fluxes in a linear-viscous bed
from various estimates of till viscosity and found that large viscosity values caused
deep deformation. The resultant subglacial sediment transport rates ranged from
10 m3 a−1 to 100 m3 a−1 of glacier width. The largest flux estimate was given for
the Norwegian Channel ice stream by Nygård et al. (2007), who inferred a trans-
port rate of 8000 m3 a−1 during a short period of streaming during the last glacial
stage.

The plastic model did not seem to agree with most subglacial measurements
of deep deformation. Iverson et al. (1998) realized that the granularity of till con-
stituents cause the minimum thickness of deformation to focus in a shear zone,
with a width dictated by grain size (Iverson et al., 1998). This distribution of
strain in granular materials implies that the deformational depth under a glacier,
with water pressure below flotation, never is a single plane (Alley, 1989b). Dila-
tant hardening processes during deformation of consolidated sediments addition-
ally has the potential to affect strain distribution in granular materials (Iverson et
al., 1998). Ploughing of large clasts through the subglacial bed additionally con-
tributes to the distribution of strain to greater depths (Brown et al., 1987; Iverson
et al., 1994; Iverson et al., 1999; Tulaczyk et al., 2001; Thomason and Iverson,
2008). Finally, variations in pore-water pressure at the IBI are able to cause sig-
nificant deviations from hydrostatic pressure in low-permeability tills, which are
exponentially damped with depth. Remnant signals of high-pressure periods can
cause the weakest point of failure to reside far below the IBI, causing the material
on top to be transported passively with minor to no deformation (Tulaczyk et al.,
2000a; Truffer et al., 2000).

Truffer et al. (2000) presented tiltmeter results from Black Rapids Glacier,
Alaska, USA, and found that more than half the surface velocity originated from
subglacial sediment deformation, surprisingly not at the IBI or the upper parts of
the till, but at least two meters below the ice-bed interface. Under hydrostatic pres-
sure distribution in the pore water, the effective pressure and, in turn, sediment
strength is lowest at the top (Eq. 2.18). Truffer et al. (2000) suggested that annual
variations in pore-water pressure at the IBI slowly diffused into the subglacial bed,
causing a minimum in strength at several meters depth.

Several clues in the sedimentary record seemed to argue against the existence
of deep and widespread deforming beds under the Pleistocene ice sheets, however.
Piotrowski and Tulaczyk (1999) interpreted Weichselian ice movement near Kiel,
North Germany, to take place mainly by sliding at the IBI. Pervasive deformation of
the subglacial bed would homogenize the till due to shear-induced granular diffu-
sion (Weertman, 1968; Hooyer and Iverson, 2000b). The presence of undeformed
sedimentary structures was indicative of low to no shear strain in the bed. Thin
stringers of well-sorted sediments were interpreted as melt-water deposited dur-
ing high-water pressure events at the decoupled ice-bed interface. Piotrowski et
al. (2001) provided further arguments against pervasive and viscous deformation
from sedimentological studies on subglacial tills. They elaborated that the pres-
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Figure 2.5. Distribution of strain in the subglacial till for differ-
ent rheological models. The till is homogeneous with a hydrostatic
pressure distribution, causing the effective pressure and strength
to increase linearly with depth. The linear and non-linear viscous
rheologies have no yield strength and deform at all depths. The
linear rheological model deforms with constant rate at all depths.
The Bingham model causes deformation at all depths where stress
exceeds strength (τ > τc). The strain distribution in a Mohr-
Coulomb material is determined by material granularity, plough-
ing from large clasts or ice keels, strain-hardening processes and
water-pressure deviations from hydrostatic pressure distribution.

ence of any sharp sedimentary contact, e.g. lower contacts of tills, sedimentary
structures in preserved outwash deposits, thin sand stringers in tills, and preser-
vation of pre-glaciation landscapes were incompatible with pervasive and deep
deformation. In addition, relatively well preserved fragile components such as
heavily weathered boulders or shell fragments embedded in the tills were unlikely
to survive large shear strains. Instead, Piotrowski et al. (2001) argued that ice flow
at several locations primarily took place by sliding at the IBI, and that the majority
of sediment was transported englacially.

Strain distribution in granular modeling

Laboratory shear tests often show thin zones of deformation caused by frictional
strengthening from the sample chamber walls (Iverson et al., 1998; Tulaczyk et
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2. Subglacial deformation of sediments
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Fig. 7: Strain marker positions within 1.0 cm of the chamber

center line in the quartz sand after 200 mm of shear displace-

ment under �0 = 80 kPa. The three-dimensional positions of

the strain markers where projected onto a two-dimensional

plane along the chamber centerline.

ical simulations, the deformation is located adjacent to the

moving top boundary (fig. 8).

DISCUSSION

The shearing of a granular material from a pre-failure state

can be subdivided into multiple stages (Li and Aydin, 2010).

We compare the shear stress and dilation values and -evolution

of the laboratory materials with the DEM results as a means

of validating the macroscopic geotechnical behaviour of the

numerical method.

Stage-1: Initially, shearing of the quartz sand and glass

beads results in contraction, caused by elastic deformation

of the grains and reorganization of the particle assemblage

towards a smaller volume. This elastic e↵ect is amplified

if the grains have a certain angularity, which can stabilize
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Fig. 8: Laterally averaged strain distributions with depth at

the end of the numerical DEM experiments, only di↵erent by

the value of the deviatoric normal stress. The �0 = 10 kPa

data are underlain to visualize the horizontal variance of the

displacement.

the force bearing chains mechanically (Nedderman, 1992;

Weatherley and others, 2012). The numerical DEM ma-

terial does not exhibit contraction during stage-1 shear,

since particles are spherical and for this reason cannot

develop fabric and strong interlocking.

Stage-2: The quartz sand, the glass beads and the nu-

merical material dilate due to relative particle movement

(Reynolds, 1885; Mead, 1925), and all materials exhibit

peak (or apparent) shear strength values (⌧p). The shear

zone evolves into a high-porosity layer, with a minimal

thickness of 5 to 10 grain diameters in non-cohesive gran-

ular materials (de Gennes, 1999). The grain activation

intensity decays exponentially with the distance from the

center of the shear band (Mueth and others, 2000; Her-

rmann, 2001). The glacial till contracts, probably due to

insu�cient consolidation or high clay-content. In these

cases, the shear stress and dilation increases to the critical

state without passing through a maximum (Nedderman,

1992).

Stage-3: In the final, critical state (Schofield and Wroth,

1968), the shear zones are fully developed, and the internal

porosity decreases cause a strain softening e↵ect in the dry

materials. The shear strength of the laboratory materials,

except of the glass beads, and the numerical material

decreases to ultimate (or e↵ective) critical state values, ⌧u,

and the dilation values stabilize. The fluctuations in the

shear stress values in the glass beads during this stage are

likely caused by the fracturing of grains. The materials

display no low-frequency volumetric- and shear strength

changes, only high-frequency fluctuations caused by the

granularity or fracturing of the material grains, and the

reorganization of the internal force-bearing network (Li

and Aydin, 2010). The amplitude of the fluctuations is

expected to decrease with increasing particle numbers, as

local heterogeneities become less important to the overall

sum of stress contributions.

The higher shear strength of the quartz sand relative to the

glass beads can be explained by the di↵erences in grain round-

ness, since the angularity of the quartz sand grains increases

particle interlocking and force chain stability. This is also

the reason for the relatively low shear strength values of the

numerical material, which consists of perfect spheres. The

magnitude of the dilation is expected to be linked to the

thickness of the shear zone. As experimentally demonstrated

by Mueth and others (2000), materials of spherical grains ex-

hibit deformation in more narrow shear-bands than aspherical

shapes. In these experiments, the angular to subangular quartz

grains show the highest values of shear stress and dilation.

The well rounded glass beads display lower dilation and shear

strength, while the numerical material with perfect spheres

display the lowest values. The clay-rich till examined in this

study, and many other tills (Iverson and others, 1997; Tulaczyk

and others, 2000) display contraction in the early stages of

shear. Net dilation only takes place in glacial tills if they have

been previously overconsolidated, as demonstrated by two tills

with contrasting clay contents by Moore and Iverson (2002).

However, we note that although the total volume of the till

is decreasing during deformation, the shear zones may still

dilate as long as compaction outside the shear bands exceeds

the dilation. A smaller volume of till was after the shear

experiment observed to having been squeezed through the
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Figure 2.6. Displacement-depth profiles from the numerical ex-
periments. (Left) Strain distribution for dry granular shear at var-
ious normal stresses, also on p. 47. (Right) Strain distribution for
wet granular shear at different shear velocities, also on p. 72.

al., 2000a; Iverson and Iverson, 2001), in the same way as shear margins of ice
streams influence flow rates (Nye, 1952; Raymond, 1996; Joughin et al., 2004).
We avoided this artificial frictional strengthening by using periodic lateral bound-
aries. If a simulated grain moves out of one of the sides, it reappears on the op-
posite side of the model. Grain pairs can also be in mechanical contact although
placed at opposite boundaries.

In paper 1 included in this thesis (Damsgaard et al. (2013), Ch. 4) we show
that the shear zone thickness in cohesion-less granular material has a certain min-
imum width, controlled by grain size, and a concave down shape (Fig. 2.6, left).
Sharp velocity discontinuities require interaction over at least 5–10 grain sizes.
The shear zone becomes wider with increasing effective pressure as internal force
chains strengthen. Compacted granular materials require volumetric expansion to
deform, as grains need to move past each other (Reynolds, 1885; Mead, 1925).
The dilation in shear zones weakens the sediment as the average number of inter-
grain contacts is reduced, increasing the likelihood that contacts are unfavorably
oriented relative to the stress.

The discussion of subglacial sediment transport does not only affect our under-
standing of glacial stability (e.g. Alley and Whillans, 1991; MacAyeal, 1992; Clark,
1994), but also likely governs processes behind formation of subglacial landforms
such as drumlins. Hindmarsh (1998) and Fowler (2000) showed that a till with
a pressure-dependent viscosity amplifies small perturbations in basal topography.
The initially small perturbations grow as kinematic waves due to spatially variable
transport rates. Schoof (2007) revisited this idea and noted that the instability the-
ory of drumlin formation is likely relevant irregardless of till rheology. He noted
that the only prerequisite is that the till flux (q in Eq. 2.29) is dependent on ef-
fective normal stress, since bed-normal stresses are larger at the stoss side of bed
bumps than on the lee side. The increase in transport capacity predicted by our nu-
merical granular experiments (Fig. 2.6, left) on the stoss side produces a relatively
large till flux, whereas the transport capacity decreases on the lee side. This trans-
port variability, if applicable to the subglacial environment, is likely to grow preex-
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2.3. Distribution of strain in the subglacial bed
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Figure 2.7. Instability growth due to differential sediment trans-
port in the deforming bed. Flow towards the right.

isting bumps in the deformable bed, possibly leading to wavy landforms on larger
scales such as drumlins (e.g. Clark, 2010), ribbed moraines (e.g. Dunlop et al.,
2008) and correlate to regularly varying subglacial stress patterns inverted from
Antarctic glaciers (e.g. Joughin et al., 2004; Sergienko and Hindmarsh, 2013).

The instability growth is illustrated in the following simple one-dimensional
example. I assume a constant effective normal stress N and driving stress τ, and
a constant shear velocity at the IBI. The stress is projected onto the bed-normal
vector:

N⊥ = N cosα+τ sinα (2.30)

where α is the local bed slope. Assuming that the depth of deformation depends
on the bed-normal stress scaled by a factor c, the sediment flux qx can be approx-
imated by:

qx ≈
1
2

cN⊥u (2.31)

where u is the horizontal velocity. The evolution of the bed topography H is gov-
erned by the divergence of sediment flux by assuming no sediment exchange with
the glacier base:

∂ H
∂ t
=
∂ qx

∂ x
(2.32)

A small bump is placed at x = 5, which seeds the instability mechanism due to dif-
ferential sediment transport (Fig. 2.7). The bump leaves several down-flow ripples,
which progressively decrease in amplitude. The instability process is analogous to
ripple or dune formation (e.g. Kennedy, 1969; Werner, 1995). All processes share
the common feature that transport rates are larger on the stoss side than on the
lee side.

The above example does not include the presumably important feedbacks from
subglacial hydrology or the bed-smoothing effect due to ice viscosity and elastic-
ity. It does, however, demonstrate the potential for landform development due to
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2. Subglacial deformation of sediments

pressure-dependent till advection in the deforming bed, and that this instability
theorem is agreeable with Mohr-Coulomb plasticity.

Paper 2 in this thesis (Ch. 5) shows that if the sediment has a low permeability
and is in a pre-failure state, dilatant-hardening processes strengthen the material
and can either increase or decrease the depth of deformation. If the water pressure
at the IBI is constant, the depth of deformation decreases as hardening processes
are less important here (Fig. 2.6, right). If the water pressure at the IBI decreases
during deformation due to limited regional recharge, strain is expected to be dis-
tributed over larger depths. The strength of the dilatant hardening processes is
governed by the ratio between rate of volumetric change and permeability, where
the strengthening is more important at larger ratio values.

2.4 Subglacial channels

Subglacial water directly influences the effective pressure, which is a first-order
control of basal friction. This relationship is included in most modern hard-bed
sliding laws (e.g. Fowler, 1986; Schoof, 2005), and most soft-bed sliding laws
discussed above (Eqs. 2.16, 2.17, 2.18, and 2.25). Several studies have noted the
importance of the subglacial hydraulic system to overall glacier movement, both
on soft and hard beds (e.g. Piotrowski, 1997; Iken and Truffer, 1997; Ng, 2000a;
Zwally et al., 2002; Schoof, 2010b; Iverson, 2010; Bartholomaus et al., 2011;
Stevens et al., 2015).

Subglacial water flows opposite to the hydropotential gradient governed by ice
surface topography, bed topography, and water pressure (e.g. Cuffey and Paterson,
2010), and can take place through several modes of flow (e.g. Flowers, 2015).
In the distributed flow mode water flows along a thin film or through a system
of linked cavities at the IBI. On soft beds or fractured bedrock water can flow
through the substratum as groundwater. Discrete flow happens where channels
are melted, abraded or cracked into the ice, substratum, or a combination of the
two. Earliest mathematical models of subglacial hydrology included one of the
drainage modes, e.g. channelized flow on hard beds (e.g. Röthlisberger, 1969; Nye,
1976) or groundwater flow in the subglacial till (e.g. Shoemaker, 1986; Lingle and
Brown, 1987).

Distributed drainage modes (interfacial water films, linked cavities, groundwa-
ter) are inefficient at evacuating subglacial water, and as a consequence generally
weaken the subglacial bed as they reduce the mechanical coupling between ice and
bed. Channelized flow is the most efficient mode of water transport, but requires
large water fluxes to balance the closure rates of ice and substratum. Due to their
efficient drainage, channels often have a lower water pressure than adjacent areas
and form a dendritic network draining the IBI. The efficient drainage lowers sub-
glacial water pressure and increases the effective pressure between ice and bed, in
turn increasing basal friction. Theoretical considerations and observations show
that subglacial meltwater production in many cases exceeds the capacity of the
distributed system, and flow localizes in more transport-efficient channels. The
variability between these two modes is the most important control on ice sheet
stability (e.g. Schoof, 2010b). Jökulhlaups are a notable example of how sudden
large-volume input of water to the subglacial bed overwhelm the subglacial hy-
drological system, causing a transient evolution of distributed to channelized flow,
often associated with glacier acceleration (e.g. Bartholomew et al., 2010; Stevens
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idealized channel incised into subglacial till with Mohr-Coulomb
plasticity. φ denotes the material angle of internal friction.

et al., 2015). Recent developments have improved the mathematical description
of coupled distributed and channelized drainage modes on hard beds, e.g. linked
cavities and R-channels (Schoof, 2010b; Werder et al., 2013) or a IBI water sheet
and R-channels (Creyts and Schoof, 2009; Hewitt, 2011).

Walder and Fowler (1994) defined a model for subglacial channelized on soft
beds. Their model combines melting of the glacier bottom into a semicircular
Röthlisberger-type channel (Röthlisberger, 1972; Nye, 1976) through turbulent
heat dissipation, counteracted by creep closure due to cryostatic pressure, as well
as sediment erosion from the channel flow at the channel base, counteracted by
slight non-linear viscous till creep closure (Eq. 2.16, Boulton and Hindmarsh (1987)
and Fowler and Walder (1993)). The treatment of sediment transport in the model
was subsequently improved by Ng (2000b). Later model formulations by Kyrke-
Smith and Fowler (2014) discarded the mathematical distinction between discrete
channels and distributed water sheets, and unified the description as a continuous
water sheet with variable thickness that can approach channelized flow.

The channel formulation of Walder and Fowler (1994) extended by Ng (2000b)
has shown to successfully reproduce observed events of subglacial drainage (Carter
et al., 2015). The till channel model (Walder and Fowler, 1994; Ng, 2000b) has
been criticized due to the choice of till rheology (e.g. Hindmarsh, 1997). The water
sheet model including sediment deformation (Kyrke-Smith and Fowler, 2014) uses
the mildly non-linear viscous Bingham model (Eq. 2.17, Boulton and Hindmarsh
(1987)), which has not been verified experimentally. Other models of soft-bed
subglacial channels have avoided the explicit treatment of subglacial till deforma-
tion by letting the lower channel surface evolve by the same dynamics governing
channel incision into the ice (Wel et al., 2013).

From the work done in this thesis, I propose future research on a new model
for subglacial till channels, where the stability is based on the well established
Mohr-Coulomb constitutive relation for till mechanics (Eq. 2.18, Fig. 2.8). As in
previous formulations for subglacial channel evolution, the channel is expected to
deepen by a stream-power law scaling erosion rate with water flux (e.g. Walder
and Fowler, 1994). The evolution of the channel geometry is analyzed by assuming
traditional granular behavior, however. The channel flanks and sediment volumes
beneath the angle of internal friction are loaded by the effective stress supplied at
the ice-bed interface and lithostatic pressure, while a wedge directly beneath the
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2. Subglacial deformation of sediments

channel is only loaded by its own lithostatic pressure. Under hydrostatic pressure
distribution, lithostatic pressure causes the shear strength to increase linearly with
depth, while pore-pressure fluctuations can cause deviations in shear strength (e.g.
Tulaczyk et al., 2000a; Fowler, 2010). The erosion and deposition of sediments
by the channel flow is expected to be governed by the Hjulström relation between
water flow velocity, sediment grain size, and transport capacity (Hjulstrom, 1939).
The erosion predicted from the Hjulström relation will be scaled by a stream power-
type law where erosion depends on water shear stress and grain size (e.g. Wilcock,
1998; Whipple and Tucker, 1999).

The numerical model for granular and pore-water interaction developed in this
thesis can be used to test the channel geometry, stability, and response to different
rates of erosion. Subglacial sediment transport by channelized water is poten-
tially important to spatial patterns of glacier erosion (Alley et al., 2003). Similarly,
transport of sediment in channels has the potential to control downstream channel
dynamics as flowing pathways can become clogged by sediment if flow velocities
decrease. As water flow in the channel increases its transport capacity, erosion is
expected to increase channel cross-sectional area in a self-similar geometry, dic-
tated by sediment mechanical properties. Episodes of rapid decrease in channel
pressure are expected to cause spontaneous channel closure as liquefaction draws
sediment into the channel. Subsequent water pulses are required to reestablish
the channel geometry, which initially increases water pressure distribution spa-
tially and weakens the frictional resistance of the bed.

As discussed in the previous, understanding subglacial hydraulic systems is in
many cases key to understanding glacier flow. The theoretical evolution of sub-
glacial water flow is extremely sensitive to the model and parameter choice. Cur-
rent models of soft-bed channelized flow rely on constitutive models for till be-
havior which are considered in conflict with the majority of empirical data. This
discrepancy underpins the need of reconsidering the channel-governing processes.
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Chapter3
Conclusions and future aspects

The coupled computational model of discrete element method (DEM) and pore-
water has in this study provided in-depth understanding of processes and mechan-
ics of slowly deforming water-saturated granular beds. The time spent on the
computationally demanding DEM simulations has been reduced by offloading all
parts of the numerical algorithm for computation on the massively parallel graphics
processing unit (GPU) platform. The experiments have revealed detailed insight
into the diversity of granular rheology (Ch. 2, 4–6), granular advection (Ch. 2, 4,
and 5), and pore-water interaction (Ch. 5 and 6).

In the following I will revisit the main research questions from the introduction
(Ch. 1) and briefly summarize the findings of this PhD project. Afterwards I will
present some opportunities for improving the computational model and widen its
applicability.

Is the DEM viable for numerical studies of subglacial sediment
deformation?

The DEM is the most commonly used method to simulate granular materials, since
continuum methods still are unable to capture their rich physical properties. How-
ever, the DEM is computationally expensive as it requires fine temporal discretiza-
tion (Ch. 4 and 7). The physical interaction of clay particles is well constrained
(e.g. Yao and Anandarajah, 2003), but numerical simulation of a wide grain-size
distribution as shown in most tills is not possible due to several computational
constraints:

• The length of the numerical time step is dictated by grain size and elastic
properties. A clay-sized particle causes a time step is on the order of 10−15 s,
increasing the computational requirements by a factor of 108 relative to the
experiments presented as part of this PhD project.

• The contact search distance between grains is determined by the largest grain
size (Ch. 7). A wider range of grain sizes causes heavier computational re-
quirements during the grain contact search.

• Many tills display a fractal grain-size distribution, implying that the largest
grain size dictates the number and sizes of smaller grains above a lower size
limit (e.g. Hooke and Iverson, 1995). The grain-size distribution of till often
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3. Conclusions and future aspects

is described by a fractal dimension of −2.9, which means that for each 1 cm
particle there are on the order of 1011 particles smaller than it.

Facing these limitations, we chose instead to use the DEM to investigate the
most fundamental dynamics in simple granular materials, and apply the achieved
insights to the subglacial setting while acknowledging the simplifying assumptions.
This approach was successful and has improved our understanding of subglacial
deformation of unlithified sediments.

What is the appropriate constitutive relation for granular materials
deforming under subglacial conditions?

Our results from laboratory and numerical shear experiments conformed to the no-
tation that till and other granular materials deform in a nearly rate-independent
manner when stressed above the Mohr-Coulomb yield strength (Ch. 2 and 4).
Viscosity known from Bagnold granular flows is not important as the average ki-
netic energy per grain is low relative to the contact duration (GDR-MiDi, 2004).
Shear strength undergoes rapid changes during early deformation as the shear
zone evolves into a layer of high porosity, but ultimately remains at a critical-state
value.

What controls the distribution of subglacial strain with depth, and
what are the implications for sediment flux and till continuity?

Shear strain in granular materials does not conform to a single surface, but the
granularity of sediments imposes a minimum shear band thickness scaled by grain
size and effective stress normal to the bed (Ch. 4 and 5). The relationship to
effective normal stress may cause growth of bumps at the ice-bed interface (IBI),
analogous to the instability mechanism of ice flow over viscous till beds proposed
by Hindmarsh (1998) and Fowler (2000).

What is the appropriate methodology to simulate coupled granular
and fluid dynamics in the subglacial bed?

Initial development and implementation of a full Navier-Stokes method for pore
water proved suboptimal for simulating flow in low permeability materials (Ch. 8).
Darcian flow is adequate for describing pore-water dynamics in the subglacial bed,
however (Ch. 5 and 8, Goren et al. (2011)). Due to low fluid and grain veloc-
ities, fluid-drag forces are negligible. The interaction between the granular and
fluid phase is mainly caused by local pore-pressure deviations from the hydrostatic
pressure distribution and porosity changes.

Do water pressure dynamics caused by subglacial deformation
influence till rheology and flux?

Deformation of consolidated granular materials causes volumetric expansion (Ch.
4). If the rate of pore space growth outpaces the diffusion of hydraulic pres-
sures, significant reductions in pore-water pressure occur (Ch. 5, Iverson et al.
(1998)). The pore-pressure drop pushes surrounding grains together and effec-
tively strengthens the granular skeleton. The hardening is rate dependent and
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transient, and may stabilize patches in the subglacial bed leading to differential
strength and landform development (Piotrowski, 1987; Clark, 2010).

How does variable input of meltwater influence stability of the
subglacial bed?

Pore-water pressure exerts a first-order control on sediment strength as it modifies
the yield strength. Events of high pore-water pressure cause a basal weakening
which may cause widespread basal deformation, but in many cases instead reduces
mechanical coupling between ice and bed (Hooke et al., 1997; Fischer and Clarke,
1997).

Hydraulically driven transient stress perturbations can cause slow creep defor-
mation beneath the yield strength, caused by reorganization in the internal net-
work of stresses in the granular bed (Ch. 2 and 6).

3.1 Extending the numerical model

Heat budgeting

The model can be extended to include heat production, advection, and diffusion.
Energy is released on the contacts between grains during relative motion (Goren
and Aharonov, 2007; Galindo-Torres et al., 2012), and during viscous deformation
of the pore fluid (e.g. Gerya, 2010; Cuffey and Paterson, 2010). A value commonly
used for the thermal pressurization coefficient is 0.5 MPa K−1 (Rempel et al., 2003;
Goren and Aharonov, 2007). This value implies that a 1 K warming of pore water in
the undrained case increases the pore-water pressure with 500 kPa. An increase in
pore-water pressure decreases effective pressure, causing lower sediment strength.

The thermal softening due to lowered effective normal stress is expected to be
transient like the dilatant hardening described in Ch. 5, and by the same extent
regulated by the ratio between deformation rate and pore-pressure diffusion rate.

Debris-rich basal ice

Glaciers commonly experience the largest internal deformation near the glacier
bed due to the non-linearity of Glen’s law (Glen, 1955; Hooke, 1981). The basal
ice is often rich in debris, and the deformational properties of this zone may be
significantly different from clean ice due to sediment content and stratification
(Hubbard and Sharp, 1989; Christoffersen and Tulaczyk, 2003a). Deformation
in this layer is potentially important for glacier motion and sedimentary processes
(Hubbard and Sharp, 1989; Hart, 1998; Alley et al., 1998; Piotrowski et al., 2001).

A new variant of the pore-fluid equations (Ch. 8) could be derived where the
pore-fluid flows according to Glen’s law for non-linear creep of polycrystalline ice,
and numerically implemented by iteratively solving for the full Cauchy stress ten-
sor. Instead of simulating nearly inviscid melt-water in the granular pores, this
method would allow for computational deformation experiments of debris-rich
basal ice.

Coupled with a solution for heat, the non-linearity of ice rheology this is likely
to focus deformation in thinner bands as the temperature directly influences the
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3. Conclusions and future aspects

creep factor A in the equation for ice rheology (Glen, 1955; Cuffey and Paterson,
2010). Heat production during deformation is likely different between clean and
dirty ice layers, further enhancing differences in deformational properties.

Breakable grain bonds

Three immediately apparent shortcomings of the current granular model is the
inability to handle cohesion, complex grain shapes and grain crushing. All three
limitations can be handled by including a formulation allowing for breakable bonds
between grains. Complex grain shapes can be constructed by filling a volume with
smaller grains and constructing bonds between them. With an included model
for bonding, experiments can be performed testing hypotheses regarding develop-
ment of grain fabric and modification of the grain-size distribution with progressive
shear strain.

Here I include an example formulation based on the incremental algorithm of
beam mechanics presented by Potyondy and Cundall (2004), but expanded with
viscous damping terms. The incremental method is simpler to implement than the
more complex total method proposed in Wang et al. (2006) and Wang (2009).
The bonds react to tensile, shear, torsion and bending strain (Tab. 3.1). When the
bond strains exceed a defined limit (σ̄c < σ̄

max or τ̄c < τ̄
max), the bond is deleted

meaning the inter-grain contact is broken.

Table 3.1. Inter-grain bond description

Definition Physical meaning

f n
i = − f n

j = knAδn
i j + γnδ̇n

i j Contraction/expansion of bond
f t

i = − f t
j = −kt Aδt

i j − γtδ̇t
i j Shear of bond

t j
n = −t i

n = knJΩi j
n + γnΩ̇

i j
n Twist of bond

t j
t = −t i

t = −kn IΩi j
t − γtΩ̇

i j
t Bend of bond

λ̄ Bond radius multiplier
r̄ = λ̄min(r i , r j) Effective bond radius
A= πr̄2 Bond cross sectional area
I = 1

4πr̄4 Contact parallel moment of inertia
J = 1

2πr̄4 Contact normal (polar) moment of inertia

σ̄c Tensile strength
τ̄c Shear strength
σ̄max = −|| f i

n||/A+ ||t i
t ||r̄/I Maximum tensile stress

τ̄max = || f i
t ||/A+ ||t i

n||r̄/J Maximum shear stress

The cohesive bond force is linear-elastic like the implemented repulsive con-
tact force (Ch. 7 Cundall and Strack, 1979; Damsgaard et al., 2013). The viscous
terms are included to allow for energy dissipation, and can be excluded by setting
the viscosities (γn,t) to zero. The bonds can transmit both force ( f ) and torque
(t ) between particles. For a bonded particle pair, members denoted with super-
scripts i and j, the bond force is calculated on a base of the relative contact linear
displacement (δn

i j) and contact rotational displacement (Ωi j). The relative linear
and rotational displacement is decomposed into the current contact plane normal
and tangential components (table 3.1), and applied to particles i and j according
to Newton’s third law. After calculating the bond force and torque components,
the corresponding maximum tensile (σ̄max) and shear stress (τ̄max) is calculated
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according to beam theory. If one of these values exceed the defined bond tensile
(σ̄c) or shear strength (τ̄c), the bond is removed.

Fabric evolution

Till fabric is a characterization of the in-situ orientation of a stochastic population
of elongated particles. The similarity in orientation of gravel-sized grains or clay
matrix is usually described by the eigenvalue method (Mark, 1973; Elias, 2006).
The degree of clustering (S1: eigenvalue) around the preferred orientation (V1:
principal eigenvector) can be used as a proxy for the cumulative shear strain in
subglacial till (Hart, 1994; Hooyer and Iverson, 2000b; Thomason and Iverson,
2006; Iverson et al., 2008). The precise rotational behavior of elongated clasts dur-
ing shear has long been a subject of discussion, however (Larsen and Piotrowski,
2003; Elias, 2006). Two processes have been proposed for fabric development in
a subglacial deforming bed, dependent on the appropriate model of till rheology:

• Jeffery (1922) rotation: Rotational movement occurs due to velocity gradi-
ents. Clasts are free to rotate and the continuous rotation results in a weak
fabric (S1 ≈ 0.6). This mode of rotation is appropriate for clasts in viscous
materials (Hicock and Dreimanis, 1992; Hart, 1994; Thomason and Iverson,
2006).

• March (1932) rotation: Rotational movement occurs due to deviatoric
stresses. Elongated and platy particles attend a stable position perpendicular
to maximum compressive stress, resulting in a strong fabric (S1 ≈ 0.8). This
rotation mode is observed in plastic materials (Hooyer and Iverson, 2000b;
Larsen and Piotrowski, 2003; Thomason and Iverson, 2006; Iverson et al.,
2008).

The bond-methodology described above can be used to simulate elongated
grains, offering the possibility to continuously monitor the fabric development un-
der different normal stress magnitudes and shear velocities. It is expected that the
numerical model displays March rotation, similar to the laboratory experiments by
Hooyer and Iverson (2000b), but sediment liquefaction on the lee side of plough-
ing bumps may cause continuous rotation.

Development of grain-size distribution

Active subglacial transport can modify the material grain size distribution by par-
ticle breakage or abrasion, and the bimodal or polymodal distributions found in
till may be a result of these two comminution mechanisms (Boulton, 1978; Hal-
dorsen, 1981; Benn and Evans, 2014). Hooke and Iverson (1995) and Iverson
et al. (1996) argued that failure of grains in force-chain networks during shear
significantly modifies the particle sizes, leading to a self-similar and fractal grain-
size distribution. During comminution the finer components become increasingly
important for distributing the stresses through the system. The mesh spacing in
the system of force chains is a function of the typical grain size. The mesh size
is expected to decrease with comminution, in effect homogenizing the stress net-
work. In this state the amplitude of the stress fluctuations during shear decrease,
and intergranular sliding and abrasion is favored to crushing. Iverson et al. (1996)
argue that large remnant clasts survive due to isolation from other large clasts by
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the finer components. The reduction of aggregate sizes during progressive shear
and the evolution in the force chain mesh can be analyzed by choosing sensible
values of the bond tensile (σ̄c) and shear strength (τ̄c) in the bonded granular
model.

32



Papers and research notes

33





Chapter4
Paper 1:

Discrete element modeling of
subglacial sediment deformation

Anders Damsgaard1, David L. Egholm1, Jan A. Piotrowski1, Slawek Tulaczyk2,
Nicolaj K. Larsen1, and Karol Tylmann3

1. Department of Geoscience, Aarhus University, Aarhus C, Denmark.

2. Department of Earth and Planetary Sciences, University of California, Santa
Cruz, California, USA.

3. Department of Earth Sciences, N. Copernicus University, Toruń, Poland.
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4. DEM modeling of subglacial sediment deformation

Abstract

The discrete element method (DEM) is used in this study to explore the
highly nonlinear dynamics of a granular bed when exposed to stress conditions
comparable to those at the bed of warm-based glaciers.

Complementary to analog experiments, the numerical approach allows a
detailed analysis of the material dynamics and the shear zone development
during progressive shear strain. The geometry of the heterogeneous stress
network is visible in the form of force-carrying grain bridges and adjacent,
volumetrically dominant, inactive zones. We demonstrate how the shear zone
thickness and dilation depends on the level of normal (overburden) stress,
and we show how high normal stress can mobilize material to great depths.
The particle rotational axes tend to align with progressive shear strain, with
rotations both along and reverse to the shear direction.

The results from successive laboratory ring-shear experiments on simple
granular materials are compared to results from similar numerical experi-
ments. The simulated DEM material and all tested laboratory materials deform
by an elasto-plastic rheology under the applied effective normal stress.

These results demonstrate that the DEM is a viable alternative to contin-
uum models for small-scale analysis of sediment deformation. It can be used to
simulate the macromechanical behavior of simple granular sediments, and it
provides an opportunity to study how microstructures in subglacial sediments
are formed during progressive shear strain.

4.1 Introduction

Deformation of subglacial sediment may be a major contributor to the overall
movement of warm-based glaciers and ice streams(e.g. Alley et al., 1986; Boul-
ton and Hindmarsh, 1987; Engelhardt et al., 1990; Kamb, 1991; Boulton, 1996),
and it is also suspected to influence the periodic dynamics ofsurge-type glaciers
(Boulton and Jones, 1979; Clarke et al., 1984; Evans and Rea, 1999; Murray et
al., 2000; Murray et al., 2003). In addition, subglacial deformation is sometimes
regarded as the primary mechanism for sediment advection/discharge (e.g. Kjær
et al., 2006; Nygård et al., 2007). However, the physics of subglacial sediment
deformation are still debated, and the deformation mode remains one of the most
controversial elements of glacier dynamics (e.g. Boulton and Hindmarsh, 1987;
Hindmarsh, 1998; Fowler, 2003; Tulaczyk, 2006; Cuffey and Paterson, 2010).

Based on field measurements of deep sediment deformation, Boulton and Hind-
marsh (1987) suggested that subglacial sediment behaves like a viscoplastic ma-
terial. Visco-plastic continuum models have since been popular among computa-
tional ice-sheet models (e.g. Alley et al., 1987b; Hindmarsh, 1998; Fowler, 2000;
Ng, 2000b), for which the rate-dependent viscous models offer a convenient one-
to-one relationship between stress and strain rate. Contrasting this approach,
Schoof (2006) described a possible implementation of a basal boundary condition
with a plastic yield stress to glacial flow models. The coupled system of glacial
hydrology and nonlinear basal sediment behavior has been reported to be of great
importance for stick-slip events (Bueler and Brown, 2009; Bougamont et al., 2011;
Bougamont and Christoffersen, 2012).

As noted by e.g. Kamb (1991) and Iverson (2010), laboratory shear-experiments
on subglacial sediment do not confirm the rate-dependent viscous-plastic model,
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4.2. Granular mechanics during shear

but instead indicate that subglacial sediment deforms due to Coulomb slip, in-
dependently of the applied strain rate. Tulaczyk et al. (2000a) and Iverson and
Iverson (2001) demonstrated that subglacial till, deforming according to the Mohr-
Coulomb plastic rheology, may also produce the deep-seated deformation profiles
that are observed in the field and often associated with a visco-plastic behavior.

However, subglacial sediment is first and foremost a granular material with an
inherent ability to change mechanical behavior, depending on the stress state, de-
formation rate, and pore water pressure. This study presents the first effort to ap-
ply the discrete element method (DEM) (also called the distinct element method)
(Cundall and Strack, 1979) for studying the granular physics of subglacial till de-
formation. This method was first suggested in this context by Iverson and Iverson
(2001) and Fowler (2003).

We explore the applicability of the DEM as an alternative to the continuum-
based visco-elastic-plastic methods for modeling subglacial deformation. A dis-
crete modeling approach can capture the highly nonlinear dynamics of subglacial
deformation, as demonstrated by laboratory shear experiments on subglacial sed-
iment samples (Iverson et al., 1997a; Tulaczyk, 1999; Thomason and Iverson,
2006; Rathbun et al., 2008; Iverson, 2010). As a supplement to laboratory ex-
periments, numerical modeling offers complete control over all model parameters,
such as grain size distribution , geotechnical properties of the material, and bound-
ary conditions. This facilitates a more transparent experimental setup whereby it
is possible to repeat experiments and quantify the effects of all input parameters.
The numerical approach allows a detailed analysis of the particle kinematics, dur-
ing and after the experiment. This small-scale analysis exceeds the capacity of
laboratory experiments, but the numerical experiments are however constrained
by the number of particles and simplifying assumptions about the particle shapes.

Here we first present previous studies on the topic of granular mechanics. We
then describe the details of the applied numerical model, as well as the setup and
results of shear experiments. We take a closer look at the internal characteristics
of the shear zone from the numerical experiments, and the implications for sub-
glacial deformational processes. Finally, we compare the modeled macroscopical
mechanical behavior to the results of laboratory ring-shear experiments on differ-
ent granular materials.

4.2 Granular mechanics during shear

In the field of glacial micromorphology, micro-scale deformation structures have
been categorized as either brittle, ductile or polyphase, suggesting a natural vari-
ability in the mode of deformation (Meer, 1993; Meer, 1996; Menzies, 2000;
Larsen et al., 2006; Phillips et al., 2013; Vaughan-Hirsch et al., 2013). Gen-
erally, the physical properties of granular materials cannot be fully described by
ideal viscous or elasto-plastic continuum relationships . Depending on the aver-
age kinematic energy of each grain or particle, a granular assemblage can assume
properties of solid-like, fluid-like, or even gaseous states (e.g. Jaeger et al., 1996).
At rest, under the influence of gravity and confining stress, granular matter forms
a stable packing and behaves like a solid, and the same material can take a range
of packing densities, dependent on the style of deposition and the stress history
(Herrmann, 2002). Overall, the rheology of all dry granular materials is strain-
rate independent at low shearing velocities, where they deform in a pseudo-static
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4. DEM modeling of subglacial sediment deformation

state. If granular materials deform under higher shearing velocities, particle in-
ertia dominates and deformation becomes rate dependent (Bagnold flow) (Zhang
and Campbell, 1992; Campbell, 2006; Krimer et al., 2012). In confined shear
experiments, the dimensionless inertia parameter I is defined by:

I = γ̇r̄

√

√ ρ

σ0
(4.1)

where γ̇ is the shear strain rate, r̄ is the mean particle radius, ρ is the material
density, and σ0 is the magnitude of the normal stress (GDR-MiDi, 2004). Ex-
periments and simulations show that the material deforms in a pseudo-static and
rate-independent manner when I < 10−3 (GDR-MiDi, 2004).

Aharonov and Sparks (2002) conducted two-dimensional DEM simulations of
shear experiments on granular material, and recognized two different modes of
strain localization, depending on the applied levels of shear velocity and normal
stress. With relatively low normal stress and high shear velocity, the deformation
was characterized by shallow deformation in a persistent boundary layer shear
zone. In contrast, the deformation was deep and distributed for higher stress levels
and lower shearing velocities.

Reynolds (1885) and Mead (1925) recognized that initially consolidated, rigid
granular materials, subjected to a shearing stress, require an increase in volume
(dilatancy) to deform. When the shearing motion stops, the shear zone collapses
and compacts due to the compressive stress. The shear strain is often localized
in shear zones, which can have a range of sizes, dependent on the boundary con-
ditions and material properties. The minimal thickness in non-cohesive materials
is in the order of 5–10 grain diameters (Gennes, 1999). Herrmann (2001) sug-
gested a typical shear band thickness minimum, based on considerations of the
force acting to mobilize particles. As a result of contact friction between neighbor-
ing particles, the magnitude of the mobilization force is inversely proportional to
the distance along the stress bearing force chains. This stabilizing effect causes the
shear induced particle velocity to decay exponentially with the distance from the
center of the shear band.

If elastic deformation is ignored, the behavior of granular materials (including
tills) can be approximated by the Mohr-Coulomb failure criteron (e.g. Boulton and
Jones, 1979; Nedderman, 1992; Hooke et al., 1997; Clarke, 2005; Iverson, 2010).
For Mohr-Coulomb materials, the macromechanical angle of internal friction (φ)
and the cohesion (C) are defined from the linear representation of the value of the
material peak or ultimate shear strength (τp, τu) under a range of normal stress
magnitudes (σ0):

τp,u = Cp,u +σ0 tan(φp,u) (4.2)

Most materials can display a range of shear strengths, depending on the consoli-
dation state. Consolidated materials in a pre-failure state typically have a higher
peak value of shear strength (τp) than materials in the critical state with a fully de-
veloped, active shear zone and a residual, ultimate shear strength (τu) (Schofield
and Wroth, 1968; Nedderman, 1992). Similarly, the material cohesion can change
during deformation. In particlular, the peak cohesion is higher than the ultimate
cohesion if the cohesive bonds between grains are not reestablished after breaking.
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ẋi

Fig. 1: Geometry and kinematic values of particles.

entities with constant mass. For a particle i with nc contacts,

the sum of translational- and rotational forces is expressed in

two equations:
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where m is the particle mass, x is the particle position vector,

g is the gravitational force vector. I is the moment of inertia,

! is the angular velocity. A dot denotes time derivation, bold

formatting means the symbol is a three-dimensional vector.

A particle is in contact with another particle or a wall

if the volumes overlap. For spherical particles, hereafter de-

noted with superscripts i and j, contact searching is a simple

operation, involving the particle center coordinates and radii:

�ij
n = ||xij || � (ri + rj) (3)

where the inter-particle vector is xij = xi � xj . Particles

overlap when �ij
n < 0, in which case the force components

normal- (fn) and tangential (f t) to the contact plane are

determined using a conventional linear-elastic contact model

(fig. 2):

f ij
n = �kn�

ij
n nij and f ij

t = �kt�
ij
t (4)

where nij = xij/||xij || is the contact normal vector, and

kn,t are the linear-elastic (hookean) spring coe�cients. The

tangential displacement along the contact plane (�ij
t ) is calcu-

lated incrementally by temporal integration of the tangential

contact velocity, and saved for the duration of the contact.

The contact velocity �̇ is found from the translational and

rotational velocities of the particles in contact (Hinrichsen

and Wolf, 2006):

�̇
ij

= (ẋi � ẋj) + ri(nij ⇥ !i) + rj(nij ⇥ !j) (5)

The contact velocity is further divided into normal- (�̇
n
) and

tangential (�̇
t
) components. The magnitude of the tangential

force is limited by the Coulomb-friction criterion of static and

dynamic friction:
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where the static friction coe�cient (µs) is larger or equal to

the dynamic friction coe�cient (µd). When the tangential

force begins to exceed the static friction, the contact begins
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Fig. 2: Schematic representation of the contact model compo-

nents, normal- and tangential to the contact plane.

to slip along the contact plane. Strain-softening behaviour at

the contact can be introduced by having a lower dynamic-

than static friction coe�cient.

The upper limit of ||f t|| is the shear force acting along

a shear plane, which is optimally oriented towards the di-

rections of principal stress. In granular Coulomb materials,

the shear planes are made up of narrow bands (⇠10 grain

diameters) deforming plastically. The shear stress on the plane

is independent of either the extent or rate of the deformation

(Nedderman, 1992). While the macroscopic direction of the

shear bands are oriented in agreement with the Coulomb

criterion, the microscopic orientation of individual contact

surfaces between grains may vary.

The geotechnical particle assemblage behaviour is thus de-

fined by micro-mechanical parameters, while the collective

macroscopical behaviour is a result of self-organizing complex-

ity of the particles. As demonstrated by Belheine and others

(2009), the normal- and shear sti↵nesses (k) e↵ectively control

the macroscopical parameters Young’s modulus and Poisson’s

ratio, while the friction coe�cients (µ) control the magnitude

of dilatancy during deformation, which in turn governs the

shear strength.

DEM implementation

For our implementation a three-dimensional geometry was

chosen, since it allows for particle rotation around arbitrary

axes, resulting in particle interlocking and correct geometry of

the inter-particle void. The kinematic grain behaviour through

time is integrated in a fully explicit manner, and assumed to

be constant for the duration of small temporal increments

(�t). The algorithm consists of a series of steps:

1. Contact search (eq. 3): Inter-particle and wall-particle

contacts are identified.

2. Interaction (eqs. 4, 5, 6): For each particle contact, the

contact forces and rotational moments are calculated.

3. Integration (eqs. 1, 2): Particle kinematics are updated

using the sum of forces and torques, and time is increased

by �t.

Once the resulting forces (eq. 1 and 2) are found, the new val-

ues of acceleration are used to update positions and velocities.

For the temporal integration, a second-order half-step leapfrog

Verlet integration scheme was used (Fraige and Langston, 2004;

Kruggel-Emden and others, 2008). The length of the time

step has to be small enough to allow multiple updates of the

kinematics, while the elastic wave travels through even the

Figure 4.1. The DEM particles are represented by spheres with
center position x and radius r. The velocity vector of a particle is
denoted ẋ , and the angular velocity vector is ω. A particle pair
is characterized by the inter-particle vector x i j , and the contact
normal vector n i j .

4.3 The discrete particle model

The Discrete Element Method DEM wasinitially formulated by Cundall and Strack
(1979). The computational method simulates the physical behavior of discontinu-
ous materials in a way that is ideal for reproducing the highly nonlinear dynamics
of granular materials. The DEM has, in addition to geotechnical simulations (e.g.
Cheng et al., 2003; Potyondy and Cundall, 2004), already been used for simulat-
ing various sedimentological transport modes, such as debris flows (Yohannes et
al., 2012), bedload transport (Drake and Calantoni, 2001), aeolian saltation (Sun
et al., 2001), mechanical sorting (e.g. Rosato et al., 2002; Kudrolli, 2004), as well
as sandbox deformation experiments (Egholm et al., 2007; Egholm et al., 2008)
and mechanical properties of fault gouges in the earthquake generation process
(e.g. Morgan and Boettcher, 1999; Morgan, 1999; Morgan, 2004; Mair and Abe,
2008).

The DEM simulates the micromechanical behavior and interaction of discrete,
unbreakable particles with their own mass and inertia, under the influence of e.g.
gravity and boundary conditions such as moving walls. The particulate nature of
the DEM is optimal not only for capturing the discrete nature of granular physics,
but also for simulating the large strains observed in soft subglacial beds. In con-
trast, mesh-based continuum numerical methods (e.g. the finite element method
(FEM), the finite difference method (FDM), and the finite volume method (FVM))
cannot simulate high deformation without frequent re-meshing, which is often a
very complicated and computationally expensive task. Additionally, the shear zone
dynamics in standard continuum plasticity models are often affected by the grid
resolution and the mesh-line orientation (Rudnicki and Rice, 1975; Borst, 1991).

The DEM includes deformation-induced porosity changes as an inherent prop-
erty because, like true sediment grains, model particles must move past each other.
In addition, the DEM responds naturally with granular-style deformation patterns,
which can take place in a distributed manner over larger parts of the volume, or
in localized shear zones.

In the applied DEM formulation, the particles are represented as spheres, which
reduces the complexity of the contact search and dynamics. The geometric extent
of each particle is represented by a position vector x , and a radius r. Each particle
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where m is the particle mass, x is the particle position vector,

g is the gravitational force vector. I is the moment of inertia,

! is the angular velocity. A dot denotes time derivation, bold

formatting means the symbol is a three-dimensional vector.
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Verlet integration scheme was used (Fraige and Langston, 2004;

Kruggel-Emden and others, 2008). The length of the time

step has to be small enough to allow multiple updates of the

kinematics, while the elastic wave travels through even the

Figure 4.2. Schematic representation of the contact model com-
ponents, normal and tangential to the contact plane.

has individual kinematic attributes, as illustrated in Figure 4.1. Based on the net
force acting on each particle, the resulting movement is calculated in every small
time step (∆t) by application of Newton’s law of motion for particles of constant
mass. For a particle i with nc contacts, the sums of translational and rotational
forces are expressed by:

mi ẍ i = mig +
nc
∑

j

�

f n
i j + f i j

t

�

︸ ︷︷ ︸

Sum of translational forces

(4.3)

I iΩ̈i =
nc
∑

j

�− �r i + 0.5||δn
i j ||�n i j × f t

i j
�

︸ ︷︷ ︸

Sum of torques

(4.4)

where m is the particle mass, g is the gravitational force vector, I is the moment
of inertia, and ω is the angular velocity. A dot denotes time derivation, a bold
formatted symbol represents a three-dimensional vector.

A particle is in contact with another particle or a wall if the volumes overlap.
For a pair of spherical particles, hereafter denoted with superscripts i and j, the
contact search is a simple operation, involving only the particle center coordinates
and radii. The particle overlap is

δn
i j = ||x i j || − (r i + r j) (4.5)

where x i j = x i − x j is the inter-particle vector. Particles overlap when δi j
n < 0, in

which case the force components normal ( f n) and tangential ( f t) to the contact
plane are assumed to obey a conventional linear-elastic contact model (Figure 4.2):
contact model

f n
i j = −knδn

i jn i j and f t
i j = −ktδt

i j (4.6)

where n i j = x i j/||x i j || is the contact normal vector. kn and kt are the linear-
elastic (Hookean) spring coefficients. The tangential displacement along the con-
tact plane (δt

i j) is calculated incrementally by temporal integration of the tangen-
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tial contact velocity, and saved for the duration of the contact. The contact velocity
δ̇ is found from the translational and rotational velocities of the particles in contact
(Hinrichsen and Wolf, 2004):

δ̇i j = (ẋ i − ẋ j) + r i(n i j ×ωi) + r j(n i j ×ω j) (4.7)

The contact velocity is further decomposed into normal (δ̇n) and tangential (δ̇t)
components. The magnitude of the tangential force is limited by the Coulomb-
friction criterion of static and dynamic friction:

|| f t
i j || ≤

¨

µs|| f n
i j || if ||δ̇t||= 0

µd|| f n
i j || if ||δ̇t||> 0

(4.8)

where the static friction coefficient (µs) is larger or equal to the dynamic friction
coefficient (µd). If the tangential force exceeds the static friction, the contact starts
to slip along the contact plane. Strain-softening behavior at the contact can be
introduced by having a lower dynamic than static friction coefficient value.

The macroscopic geotechnical behavior of the simulated particle assemblage
is generally a result of the self-organizing complexity of the particles, but it is in-
fluenced by the micro-mechanical parameters. As demonstrated by Belheine et al.
(2009), the normal and shear stiffnesses (kn, kt) effectively control Young’s modu-
lus and Poisson’s ratio, which are macroscopic parameters. The friction coefficients
(µs, µd) control the level of dilatancy during deformation, which in turn governs
the shear strength.

Our DEM implementation is three-dimensional. This allows for particle rota-
tion around arbitrary axes, which facilitates particle interlocking and gives a re-
alistic three-dimensional geometry of the inter-particle voids. Two-dimensional
DEM models tend to overfacilitate particle rolling (e.g. Morgan, 1999), since the
rotational axes of particles are always parallel. The enhanced rolling in a 2D setup
ultimately results in low material shear strengths.

The kinematic grain behavior is time-integrated in a fully explicit manner, re-
sulting in a simple three-step algorithm:

1. Contact search (Eq. 4.5): Inter-particle and wall-particle contacts are iden-
tified.

2. Interaction (Eq. 4.6, 4.7, 4.8): For each particle contact, the contact forces
and rotational moments are calculated.

3. Integration (Eq. 4.3, 4.4): Particle kinematics are updated using the sum of
forces and torques, and time is increased by ∆t.

For the temporal integration, a second-order half-step leapfrog Verlet integration
scheme is used (Fraige and Langston, 2004; Kruggel-Emden et al., 2008). The
length of the time step must be small enough to allow multiple updates of the
kinematics, while the elastic wave travels through even the smallest particle in the
assemblage. We therefore define the time step value on the basis of the natural
undamped frequency (ω0 =

p

kn/m) in a linear spring system (∆tcrit = 2/ω0)
(O’Sullivan and Bray, 2004), which is a function of the elastic p-wave velocity
(vp):

∆t = f

√

√ min(m)
max(kn, kt)

= f
min(r)

q

28
9 m−1πmin(r)

vp
(4.9)
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Fig. 3: Model geometry in the numerical shear experiments.

Grey particles have a fixed horizontal velocity; zero for the

lower particles, and u for the upper particles. The resultant

shear stress (⌧) is a function of the time (t), the shear velocity

(u), the e↵ective normal stress (�0), the material sti↵nesses

(kn,t), and the coe�cients of friction (µs,d). The boundaries

to the left, right, front, and back are periodic.

smallest particle in the assemblage. We therefore define the

time step value on the basis of the natural undamped frequency

(!0 =
p

k/m) in a linear spring system (�tcrit = 2/!0)

(O’Sullivan and Bray, 2004), or as a function of the elastic

p-wave velocity (vp):

�t = f

s
min(m)

max(kn, kt)
= f

min(r)
q

28
9 m�1⇡min(r)

vp
(7)

where min(m) is the smallest particle mass. The constant

f is introduced as a safety factor to account for the irregu-

lar contact network, and is dependent on the packing and

the particle size distribution. In our experiments, a value

of f = 0.075 was used (Zhang and Campbell, 1992). The

length of the time steps are of magnitude of 10�7 s for the

presented simulations, depending on the minimum radius,

material density and largest sti↵ness.

To cope with the high computational requirements, the

algorithm was formulated for graphics-processing unit (GPU)

computation using the CUDA C API (NVIDIA, 2013b). Due

to the parallel nature of the problem, the algorithm is able to

utilize the high arithmetic potential of modern GPU’s. Most

components of the contact search-, contact model-, and inte-

gration routines are single-instruction, multiple-data problems,

suited for the massively parallel structure of GPU streaming

multiprocessors (Kirk and Hwu, 2010; NVIDIA, 2013a). Simu-

lation setup, control flow and data analysis is handled through

a custom Python API. The sphere DEM software package is

licensed under the GNU Public License v. 31, and the project

is maintained at http://github.com/anders-dc/sphere.

Table 1: Micromechanical properties and geometrical values

for particles in the shear experiment.

Parameter Symbol Value

Particle count N 10000
Mean diameter 2r̄ 0.04 m

Std. deviation of diameter � 0.000 187 m
Spatial domain dimensions L 0.86⇥0.86⇥0.94 m

Material density ⇢ 2.6 ⇥ 103 kg m�3

Normal sti↵ness kn 1.16 ⇥ 109 N m�1

Tangential sti↵ness kt 1.16 ⇥ 109 N m�1

Friction coe�cient (static) µs 0.3
Friction coe�cient (dynamic) µd 0.3

Deviatoric normal stress range �0 10 kPa to 120 kPa

Shear velocity u 0.0369 m s�1

Wall mass mw 6.42 kg

Time step length �t 6.33 ⇥ 10�7 s
Simulation length ttotal 20 s

Model configuration
We have adapted a model geometry where infinite shear strains

can be obtained with periodic front-, back, left- and right

boundaries (fig. 3). The particles are initially placed randomly

in a large space, where no particles are in physical contact.

The particle assemblage is then gravitationally consolidated

by running the model through time, until the deficit potential

energy, after temporarily being transformed to kinetic- and

rotational energy, is stored in the elastic components of the

contacts, or dissipated away by the frictional components in

the system. Next, the particles are subjected to consolidation

under a deviatoric normal stress (�0), applied by the dynamic

top wall. The normal stress is typically identical during the

consolidation and the subsequent shear setup. The particles

are sheared at a constant velocity (u). The lowermost particles

are fixed at their horizontal positions, while the uppermost

particles are given a uniform, non-zero horizontal velocity.

All particles with prescribed kinematics are also defined to

have a zero angular velocity. The shear stress (⌧) and e↵ective

normal stress (�0) values are calculated as the sum of the

force components acting on the upper fixed particles, along

the axis of movement and normal to the top wall, respectively.

The particle assemblage is free to dilate, as long as the upper

deviatoric stress boundary condition is satisfied. The shearing

velocity is in a series of initial tests gradually increased, to

find the convergent speed that still produced the same sim-

ulation output compared to lower speeds. This ensured that

computational times are held as low as possible.

The chosen physical- and geometrical parameters are listed

in table 1. The sti↵ness values are one order of magnitude

less than pure quartz (Clark, 1966), chosen to reduce com-

putational time (eq. 7). As a first estimate of the remaining

parameter values, the normal- and tangential sti↵nesses, and

the static- and dynamical coe�cients of friction are set to

be of equal value, respectively. The value of the frictional

coe�cients was adjusted until the magnitude of the dilation

in numerical experiments matched the laboratory materials.

The parameters are identical during the consolidation steps.

The particle radii are drawn from a log-normal distribution,

which gives a realistic grain size distribution of a well-sorted

coarse sediment (Nedderman, 1992).

1http://gnu.org/licenses/gpl.html

Figure 4.3. Model geometry in the numerical shear experiments.
Grey particles have a fixed horizontal velocity; zero for the lower
particles, and u for the upper particles. The resultant shear stress
(τ) is a function of the time (t), the shear velocity (u), the effec-
tive normal stress (σ′), the material stiffnesses (kn, kt), and the
coefficients of friction (µs, µd). The boundaries to the left, right,
front, and back are periodic.

where min(m) is the smallest particle mass, and min(r) is the smallest particle ra-
dius. The constant f is introduced as a safety factor to account for the irregular
contact network. It generally depends on the packing and the particle size distri-
bution. In our experiments, a value of f = 0.075 was used (Zhang and Campbell,
1992).

To cope with the high computational requirements, the algorithm is formulated
for graphics-processing unit (GPU) computation using the CUDA C API (Kirk and
Hwu, 2010; NVIDIA, 2013b; NVIDIA, 2013a). The sphere DEM software is free
and open source software, licensed under the GNU Public License v. 31. The project
is maintained at https://github.com/anders-dc/sphere.

Model configuration

We have adapted a model geometry where infinite shear strains can be obtained
with periodic lateral boundaries (Figure 4.3). When a particle moves across a pe-
riodic boundary, it immediately re-enters through the opposite side. The particle
contact search also works across these boundaries, so particle pairs can be in con-
tact, although they are placed at opposite margins.

The particles are initially positioned randomly but without particles in physical
contact. The particle assemblage is then gravitationally consolidated by running

1https://gnu.org/licenses/gpl.html
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4.4. Results

Table 4.1. Micromechanical properties and geometrical values for
particles in the DEM shear experiment.

Parameter Symbol Value
Particle count Np 10000
Mean diameter 2r̄ 0.04 m
Std. deviation of diameter σ 0.000187 m
Spatial domain dimensions L 0.86× 0.86× 0.94 m
Material density ρ 2.6× 103 kg m−3

Normal stiffness kn 1.16× 109 Nm−1

Tangential stiffness kt 1.16× 109 Nm−1

Friction coefficient (static) µs 0.3
Friction coefficient (dynamic) µd 0.3
Normal stress range σ0 10 kPa to 120 kPa
Shear velocity u 0.0369 ms−1

Wall mass mw 6.42 kg
Time step length ∆t 6.33× 10−7 s
Simulation length ttotal 20 s

the model through time, until the deficit potential energy, after temporarily being
transformed to kinetic and rotational energy, is stored in the elastic components
of the contacts, or is dissipated away by the frictional components of the system.
Next, the particles are subjected to consolidation under a normal stress (σ0), ap-
plied to the dynamic top wall. The particles are afterwards sheared at a constant
velocity (u). The lowermost particles are fixed at their horizontal positions, while
the uppermost particles are given a uniform, non-zero horizontal velocity. The
fixed particles are defined to have a zero angular velocity. The shear stress (τ) and
effective normal stress (σ′) values are calculated as the sum of the force compo-
nents acting on the upper fixed particles, along the axis of movement and normal
to the top wall, respectively. The particle assemblage is free to dilate, as long as
the upper stress boundary condition is satisfied. The numerical particles are in-
destructible, and the DEM experiments are therefore without grain crushing and
abrasion.

The values of the physical and geometrical parameters are listed in Table 4.1.
For simplicity, equal values are used for the normal and tangential stiffnesses, as
well as for the static and dynamical coefficients of friction. The particle radii are
drawn from a log-normal distribution.

The selected parameter values in the numerical experiments result in inertia
parameter values (I , Eq. 4.1) between 7.5 × 10−4 and 2.2 × 10−4. With these
values, it is reasonable to assume that the material is deforming in a pseudo-static
state without significant effects of particle inertia. The shearing velocity exceeds
the deformation rate under glaciers by several orders of magnitude, but since the
material deforms rate independently beneath I = 10−3, the larger velocity only
helps to minimize the computational time required.

4.4 Results

During the pre-shear consolidation phase, the numerical material compacts with
exponentially decaying volumetric strain rates, which is typical for granular mate-
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RESULTS

The laboratory quartz sand is first sheared at three di↵er-

ent velocities (u = 1.67 ⇥ 10�6 m s�1, 8.3 ⇥ 10�6 m s�1 and

1.67 ⇥ 10�5 m s�1) in order to constrain the relationship be-

tween the shear strength and a range of strain rates. Since

no significant di↵erence in shear strength is observed, the hy-

pothesis of a viscous component in the rheology is discarded,

and subsequent shear experiments are performed only for u

= 1.67 ⇥ 10�5 m s�1 (corresponding to 1.0 mm min�1).

For the numerical DEM experiments, the shearing velocity

is progressively lowered from 0.0369 m s�1 to 0.003 69 m s�1,

until the results converged and the material deformed in a

pseudo-static style without noticeable e↵ects of particle inertia.

Below these velocities, which exceed the deformation rate

under glaciers by several orders of magnitude, the mechanical

behaviour of the numerical model is thus also rate independent.

Table 1 shows the values of the micromechanical- and ge-

ometrical parameters used in the DEM shear experiments,

which gave a reasonable result in the Mohr-Coulomb fail-

ure analysis. During the pre-shear consolidation phases, the

laboratory- and numerical materials compact with exponen-

tially decaying volumetric strain rates, as typical in granular

materials, with reversible elastic- and permanent plastic de-

formation components (Nedderman, 1992) and the length of

the consolidation period influencing the shear strength of the

material (Scholz, 1998; Rathbun and others, 2008). In figure

6, stress- and dilation data from shear experiments with a

normal stress of 80 kPa to 85 kPa on the three laboratory ma-

terials and the numerical material are shown for comparative

purposes.

For all the materials tested, the peak shear strength (⌧p)

is reaches at a low level of shear strain (�). The quartz sand

reaches it’s peak shear strength at a � = 0.24, the glass beads

peaks at � = 0.1, while the strength of the numerical material

peaks at � = 0.04. The glacial till reaches it’s peak shear

strength at � = 0.01.

The fluctuations in the glass bead shear stress data after

the peak shear strength value are interpreted as an e↵ect of

high amounts of grain crushing, which is audible outside the

ring-shear apparatus during the experiment. The glass beads

are mechanically weaker than the monocrystals of the quartz

sand, and thus more likely to fracture.

Figure 7 shows the collective results of the failure analysis.

Fitting eq. 8 to the peak- and ultimate failure stress data

results in �p = 45�, Cp = 3.7 kPa, �u = 44� and Cu = 2.4 kPa

for the quartz sand, �p = 37�, Cp = 1.8 kPa, �u = 35�, Cu

= 1.5 kPa for the glass beads, �p = 32�, Cp = 1.2 kPa, �u

= 22�, Cu = 0.51 kPa for the numerical DEM material, and

�p = 18�, Cp = 3.1 kPa, �u = 18�, Cu = 0.69 kPa for the

till. The linear correlations confirm that the tested materials

deform according to the Mohr-Coulomb theory.

The positions of the strain markers are used for mapping

the shear zones in the glass beads and the quartz sand. This

is done for �0 = 85 kPa, where the shear zone is determined

to be approximately 4 mm thick in the glass beads, and 6 mm

thick in the quartz sand (fig. 8). The material is sampled

above, inside, and below the shear zone, and the grain size

distributions are analyzed using a laser di↵raction instrument.

No significant di↵erences in the grain size distributions are

found between the three samples in each material. During

localized deformation in the ring-shear, the mixing zone is

located vertically near the shearing gap (fig. 8). In the numer-
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ical simulations, the deformation is located adjacent to the

moving top boundary (fig. 9).

DISCUSSION

The shearing of a granular material from a pre-failure state

can be subdivided into multiple stages (Li and Aydin, 2010).

We compare the shear stress and dilation values and -evolution

of the laboratory materials with the DEM results as a means

of validating the macroscopic geotechnical behaviour of the

numerical method.

Stage-1: Initially, shearing of the quartz sand and glass

beads results in contraction, caused by elastic deformation

of the grains and reorganization of the particle assemblage

towards a smaller volume. This elastic e↵ect is amplified

if the grains have a certain angularity, which can stabilize

the force bearing chains mechanically (Nedderman, 1992;

Weatherley and others, 2012). The numerical DEM ma-

terial does not exhibit contraction during stage-1 shear,

since particles are spherical and for this reason cannot

develop fabric and strong interlocking.

Stage-2: The quartz sand, the glass beads and the nu-

merical material dilate due to relative particle movement

(Reynolds, 1885; Mead, 1925), and all materials exhibit

peak (or apparent) shear strength values (⌧p). The shear

zone evolves into a high-porosity layer, with a minimal

thickness of 5 to 10 grain diameters in non-cohesive gran-

ular materials (de Gennes, 1999). The grain activation

intensity decays exponentially with the distance from the

Figure 4.4. Shear friction (upper panel) and dilation (lower
panel) as a function of shear strain, at different normal stress val-
ues in the DEM experiments.

rials (Nedderman, 1992). When sheared after consolidation, the numerical DEM
material also behaves as a normally consolidated granular material, with clearly
distinguishable peak and ultimate shear strength values (Figure 4.4). The peak and
ultimate shear friction values depend on the level of normal stress. A high level
of normal stress requires larger shear strains before the ultimate shear strength
is reached. Furthermore, the magnitude of the total dilation increases with the
magnitude of the normal stress.

The Mohr-Coulomb relationship (Eq. 4.2) is fitted to the shear stress data us-
ing a nonlinear least-squares Marquardt-Levenberg algorithm. The regressed co-
efficients and their asymptotic standard error values are φp = 32◦ ± 0.31◦, Cp =
1.2±0.21 kPa in the peak failure state, and φu = 22◦±0.47◦ and Cu = 0.51±0.31
kPa in the critical failure state. The linear correlation confirms that the mate-
rial deforms according to the Mohr-Coulomb theory. The measured values of the
macromechanical angle of internal friction are within the range found in other
tests involving real materials, ranging from 17◦ for smooth spherical particles to
about 56◦ for angular particles (Nedderman, 1992).

Within the modelled material, stress is distributed heterogeneously along a
complex network of force chains (Figure 4.5 and 4.6). Particles in a force chain
are often subjected to stress magnitudes more than four times the macroscopic
confining stress (Figure 4.5). The force chains are generally aligned with the di-
rection of maximum compressive stress, resulting from the combined influence of
the overburden normal stress and the shear movement (Figure 4.7). Therefore,
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shearing gap, separating the upper and lower sidewalls (fig. 4).

This loss of material contributed to the observed contraction.

The mechanical behaviour of the DEM particles in the

densely packed and sheared configuration is generally in good

agreement with the quartz sand and glass bead results. We

note that the stage-1 elastic response is not visible as volu-

metric contraction in the DEM. The method however seems

adequate to describe the sediment behaviour during stage-2

and stage-3 deformation at higher shear strains.

Variability of the vertical strain distribution

The numerical experiments demonstrate how the vertical par-

ticle displacement profiles depend on the applied normal stress

(fig. 8). In the low-pressure simulations, a shear band develops

at the top boundary, and particle velocities decay away from

the boundary (see also Mueth and others (2000)). Due to the

absence of a strong inter-particle cohesion, the strain developed

in shear bands of variable thickness instead of sharp planes

of failure (e.g. Tchalenko, 1970). The shear zone thickness is

equivalent to approximately 7 mean particle diameters (tab.

1).

In the laboratory experiment on quartz sand with a normal

stress value of 80 kPa, a slight inclination of the upper and

lower parts of the strain markers is seen (fig. 7). It can be

concluded that the deformation is either initially distributed

throughout much of the chamber transect, before localizing at

the shearing gap, as observed by Rathbun and Marone (2010),

or that the strain rates decay continuously away from the

chamber center (Mueth and others, 2000; Herrmann, 2001).

The mixing zone is narrower near the side walls (i.e. lens

shaped in transverse section), which is also observed in similar

ring-shear experiments (e.g. Iverson and others, 1996, 1997,

2008; Hooyer and Iverson, 2000a; Thomason and Iverson,

2006). This is evident of the frictional e↵ect of the side walls,

which tend to stabilize adjacent volumes.

In contrast, the numerical shear bands form adjacent to

the moving boundary because there is no sidewall friction

in the numerical setup. Without wall friction, shearing in a

zone near the top boundary requires a minimum of material

to be accelerated. Furthermore, because the weight of the

overburden material increases the normal forces, the shear

strength (eq. 6) increases with depth, which also acts to reduce

deformation with depth. Heterogeneous shear strength with

depth is therefore required for shifting the shear zone away

from the top boundary.

In situ measurements of subglacial water pressure (e.g. En-

gelhardt and others, 1990; Murray and Clarke, 1995; Hooke

and others, 1997; Engelhardt and Kamb, 1997; Hart and

others, 2009; Bartholomaus and others, 2011), and sedimen-

tary indications of palaeo-subglacial conditions (Piotrowski

and Tulaczyk, 1999; Boyce and Eyles, 2000; Larsen and oth-

ers, 2004; Piotrowski and others, 2001, 2006), show that the

magnitude of the porewater pressure often lies close to the

ice overburden pressure, modulated by diurnal and seasonal

variations. This imples a net value of the e↵ective stress close

to zero. In such cases, our numerical results suggest a deforma-

tion profile of convex shape (fig. 8). The subglacial transport

rate of a warm-based glacier with a well-developed drainage

system, resting on a granular bed, thus seem to be controlled

by the value of the normal stress, the e↵ective diameter of

the granular material, and the basal velocity. The granular

frictional mechanisms included here are however not su�cient

to explain the ⇠5 m thick deformation profiles inferred in

the fine-grained till beneath Antarctic ice streams (Alley and
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Fig. 9: Visualization of the dispersive pressures of the hetero-

geneous stress network in the simulated material, where �0 =

8 ⇥ 104 Pa.

others, 1986; Engelhardt and others, 1990), where hydrological-

and thermal e↵ects are likely to play an important role (e.g.

Bell, 2008; Murray and others, 2008; Bougamont and Christof-

fersen, 2012), but confirms that convex-upward displacement

profiles are possible in Mohr-Coulomb granular materials, as

demonstrated by Tulaczyk and others (2000) and Iverson and

Iverson (2001). The depth of deformation at these sites may in-

stead be on a centimetre-scalen (Engelhardt and Kamb, 1998),

which is more consistent with the presented results of dry

granular mechanics. Deeper deformation is however possible

if a feedback mechanism causing dilatant hardening (Iverson

and others, 1998) counter-acts shear zone development, or if

the moving, upper interface has a rough geometry (Rathbun

and Renard, 2012).

Force chains

Force chains (also called grain bridges or the phenomenon

of arching) are an important physical property of granular

materials. Granular materials are by definition heterogeneous,

and the force network providing the stability of the system is

nonuniform (Jaeger and others, 1996). Previous investigations

have established that the mesh size of the large force network

has a characteristic size, about 10 times larger than the grain

diameter (Clement, 1999), and obviously sensible to grain

size variance. It is likely that this length scale also defines

the minimum thickness of slip bands (de Gennes, 1999). The

particles in a force chain are often subjected to pressure levels

more than double the stress applied from above (Iverson and

others, 1996). During continuous shear, it can be observed

that the force network is rapidly reconfiguring itself2, even

faster than the grain reorganization (Aharonov and Sparks,

1999).

2Animation available from url: http://cs.au.dk/~adc/files/

shear-80kPa-pressures.mp4 (29 MB)

Figure 4.5. Visualization of the dispersive pressures of the het-
erogeneous stress network in the simulated material withσ0 = 80
kPa.

force chains are predominantly vertical during consolidation and subhorizontal
during shear. In the latter situation with shear, the force chain network is rapidly
reconfiguring, even faster than the grain reorganization2.

In the absence of friction from the sides, the shear zone develops near the top
boundary since this configuration requires a minimum of material to be acceler-
ated. Furthermore, the material strengthens with depth because the weight of the
overburden material increases the normal stress and the shear strength of particle
contacts (Eq. 4.8).

The numerical experiments demonstrate how the vertical particle displacement
profiles depend on the applied normal stress (Figure 4.8). In the simulations with
low normal stress, a shear band develops at the top boundary, and particle veloc-
ities decrease with depth. Due to the absence of a strong inter-particle cohesion,
the deformation accumulates in shear bands of variable thickness instead of along
sharp planes of failure (e.g. Tchalenko, 1970). The shear zone thickness is equiv-
alent to approximately seven mean particle diameters. For higher levels of normal
stress, the deformation profile is deeper and the shear zone thicker. The internal
porosity values (Figure 4.9) are strongly connected to the corresponding defor-
mation profile (Figure 4.8), since shear strain in normally consolidated materials
increases the porosity in the absence of particle crushing. Overall, the experiments
with the lowest normal stress values have the highest porosity values in the upper
zone of the material, which is a consequence of the shallow band of active defor-
mation. The experiments with high normal stress values show a deeper increase of
porosity, owing to the increased shear zone thickness. The shear zone itself displays
a complex system of self-organized particle mechanics in highly transient patterns
(Figure 4.10). The particle contact stresses result in rolling or inter-particle slip,

2A supplementary animation is available at: http://users-cs.au.dk/adc/files/shear-
80kPa-pressures.mp4 (29 MB)
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Fig. 10: Stress distribution in the non-fixed particles. Width

and color of the line segments are determined by the magnitude

of the contact normal forces (||fn||). Data from the numerical

DEM experiment (�0 = 80 kPa) at the final time step during

consolidation (upper) or shear (lower). The shear movement

in the lower plot takes place along the top boundary towards

the right. Several contacts are greatly exceeding the upper

limit of the color bar.

The stresses are distributed heterogeneously within the

material (fig. 9), along a complex network of force chains,

and mechanically inactive, volumetrically dominant zones.

Figure 10 shows the inter-particle normal force magnitudes as

lines connecting the particle centres, projected onto the plane

with along-flow axis (x1) and the vertical axis (x3), during

consolidation and shear, respectively. The orientation of force

chains tends to equal the direction of maximum compressive

Fig. 11: Strike and dip of the 50% strongest inter-particle

normal forces (fn) at the final time step of the DEM consoli-

dation (left) and DEM shear (right), both when �0 = 80 kPa,

equal angle projection.
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Fig. 12: Porosity values of horizontally integrated slabs at the

final time step in the numerical experiments.

stress, consisting of the e↵ective normal- and shear stress (fig.

11), where the orientation of the strongest particle contact

forces are plotted. During consolidation, the contact forces are

dominantly oriented vertically, horizontally scattered isotropi-

cally. During shear, the mean direction is instead relocated

in the direction of shear, with a smaller variance. Since the

force chains temporally carry stresses of high magnitude, they

are e↵ective mechanisms for grain crushing, even spatially

distant from the shear zone. Yet, grain size modification due

to particle abrasion is likely favored inside the shear zone,

where the relative movement between particles is largest. Grain

bridges in glacial tills are mainly aligned oblique to the shear

direction, and are often associated with crushed grains (Hooke

and Iverson, 1995; Iverson and others, 1996; Larsen and others,

2007).

Dynamics of dilation and porosity

As a consequence of the relative movement of the particles

during stage-2 shear, the sample initially expands as the poros-

ity increases when particles move past each other (Reynolds,

1885). After the critical state is reached, the dilation stabi-

lizes, and the dilated shear zone exerts a net strain softening

e↵ect. Frequent fluctuations of the assemblage thickness are a

product of shifting configurations of the force chains, as noted

by e.g. Iverson and others (1996); Miller and others (1996);

Aharonov and Sparks (2002) and (Li and Aydin, 2010), and

these are bound to decrease with an increasing number of

particles (Li and Aydin, 2010).

The porosity change is strongly connected to the defor-

mation profile (fig. 8 and 12), since shear strain increases

the porosity in the absence of particle crushing. Overall, the

experiments with the lowest deviatoric normal stress have the

highest porosity values in the upper zone of the material, which

is a consequence of the shallow band of active deformation.

The experiments with high deviatoric normal stresses show

a deeper increase of porosity, owing to the more distributed

deformation. The magnitude of the total dilation increases

with the value of the deviatoric normal stress.

The implications of the volumetric changes during forma-

tion of shear bands are di↵erent when the granular material is

saturated with porewater. The pore fluid can have two oppo-

site e↵ects depending on the degree of grain crushing in the

shear zone. Without significant grain crushing, the shear zone

dilates under deformation, which decreases the local porewater

pressure, increases the e↵ective pressure, and causes dilatant

hardening (Iverson and others, 1998). Such hardening e↵ects

Figure 4.6. Force distribution in the non-fixed particles during
consolidation (upper panel) and during shear (lower panel). σ0 =
80 kPa in both cases. The width and color of the line segments are
determined by the magnitude of the contact normal force (|| f n||).
The shear movement in the lower plot takes place along the top
boundary towards the right. Several of the contacts forces are
greatly exceeding the upper limit of the color bar.
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Fig. 10: Visualization of the dispersive pressures of the het-

erogeneous stress network in the simulated material, where �0

= 8 ⇥ 104 Pa.

that the force network is rapidly reconfiguring itself2, even

faster than the grain reorganization (Aharonov and Sparks,

1999).

The stresses are distributed heterogeneously within the

material (fig. 10), along a complex network of force chains,

and mechanically inactive, volumetrically dominant zones.

Figure 11 shows the inter-particle normal force magnitudes as

lines connecting the particle centres, projected onto the plane

with along-flow axis (x1) and the vertical axis (x3), during

consolidation and shear, respectively. The orientation of force

chains tends to equal the direction of maximum compressive

stress, consisting of the e↵ective normal- and shear stress (fig.

12), where the orientation of the strongest particle contact

forces are plotted. During consolidation, the contact forces are

dominantly oriented vertically, horizontally scattered isotropi-

cally. During shear, the mean direction is instead relocated

in the direction of shear, with a smaller variance. Since the

force chains temporally carry stresses of high magnitude, they

are e↵ective mechanisms for grain crushing, even spatially

distant from the shear zone. Yet, grain size modification due

to particle abrasion is likely favored inside the shear zone,

where the relative movement between particles is largest. Grain

bridges in glacial tills are mainly aligned oblique to the shear

direction, and are often associated with crushed grains (Hooke

and Iverson, 1995; Iverson and others, 1996; Larsen and others,

2007).

Dynamics of dilation and porosity

As a consequence of the relative movement of the particles

during stage-2 shear, the sample initially expands as the poros-

ity increases when particles move past each other (Reynolds,

1885). After the critical state is reached, the dilation stabi-

2Animation available from url: http://cs.au.dk/~adc/files/

shear-80kPa-pressures.mp4 (29 MB)
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Fig. 11: Stress distribution in the non-fixed particles. Width

and color of the line segments are determined by the magnitude

of the contact normal forces (||fn||). Data from the numerical

DEM experiment (�0 = 80 kPa) at the final time step during

consolidation (upper) or shear (lower). The shear movement

in the lower plot takes place along the top boundary towards

the right. Several contacts are greatly exceeding the upper

limit of the color bar.

lizes, and the dilated shear zone exerts a net strain softening

e↵ect. Frequent fluctuations of the assemblage thickness are a

product of shifting configurations of the force chains, as noted

by e.g. Iverson and others (1996); Miller and others (1996);

Aharonov and Sparks (2002) and (Li and Aydin, 2010), and

these are bound to decrease with an increasing number of

particles (Li and Aydin, 2010).

Fig. 12: Strike and dip of the 50% strongest inter-particle

normal forces (fn) at the final time step of the DEM consoli-

dation (left) and DEM shear (right), both when �0 = 80 kPa,

equal angle projection.

Figure 4.7. Trend and plunge of the 50% strongest DEM inter-
particle normal forces ( f n) during consolidation (left) and during
shear (right). σ0 = 80 kPa in both cases. The plots are equal-
angle stereographic projections on the lower-hemisphere, with the
stereonet equator situated in the horizontal (x1,x2)-plane. The
white plus symbols denote the trend and plunge of the maximum
compressive stress (σ′ + τ). The arrows in the right plot denote
the shearing direction.
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Fig. 7: Strain marker positions within 1.0 cm of the chamber

center line in the quartz sand after 200 mm of shear displace-

ment under �0 = 80 kPa. The three-dimensional positions of

the strain markers where projected onto a two-dimensional

plane along the chamber centerline.

ical simulations, the deformation is located adjacent to the

moving top boundary (fig. 8).

DISCUSSION

The shearing of a granular material from a pre-failure state

can be subdivided into multiple stages (Li and Aydin, 2010).

We compare the shear stress and dilation values and -evolution

of the laboratory materials with the DEM results as a means

of validating the macroscopic geotechnical behaviour of the

numerical method.

Stage-1: Initially, shearing of the quartz sand and glass

beads results in contraction, caused by elastic deformation

of the grains and reorganization of the particle assemblage

towards a smaller volume. This elastic e↵ect is amplified

if the grains have a certain angularity, which can stabilize
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Fig. 8: Laterally averaged strain distributions with depth at

the end of the numerical DEM experiments, only di↵erent by

the value of the deviatoric normal stress. The �0 = 10 kPa

data are underlain to visualize the horizontal variance of the

displacement.

the force bearing chains mechanically (Nedderman, 1992;

Weatherley and others, 2012). The numerical DEM ma-

terial does not exhibit contraction during stage-1 shear,

since particles are spherical and for this reason cannot

develop fabric and strong interlocking.

Stage-2: The quartz sand, the glass beads and the nu-

merical material dilate due to relative particle movement

(Reynolds, 1885; Mead, 1925), and all materials exhibit

peak (or apparent) shear strength values (⌧p). The shear

zone evolves into a high-porosity layer, with a minimal

thickness of 5 to 10 grain diameters in non-cohesive gran-

ular materials (de Gennes, 1999). The grain activation

intensity decays exponentially with the distance from the

center of the shear band (Mueth and others, 2000; Her-

rmann, 2001). The glacial till contracts, probably due to

insu�cient consolidation or high clay-content. In these

cases, the shear stress and dilation increases to the critical

state without passing through a maximum (Nedderman,

1992).

Stage-3: In the final, critical state (Schofield and Wroth,

1968), the shear zones are fully developed, and the internal

porosity decreases cause a strain softening e↵ect in the dry

materials. The shear strength of the laboratory materials,

except of the glass beads, and the numerical material

decreases to ultimate (or e↵ective) critical state values, ⌧u,

and the dilation values stabilize. The fluctuations in the

shear stress values in the glass beads during this stage are

likely caused by the fracturing of grains. The materials

display no low-frequency volumetric- and shear strength

changes, only high-frequency fluctuations caused by the

granularity or fracturing of the material grains, and the

reorganization of the internal force-bearing network (Li

and Aydin, 2010). The amplitude of the fluctuations is

expected to decrease with increasing particle numbers, as

local heterogeneities become less important to the overall

sum of stress contributions.

The higher shear strength of the quartz sand relative to the

glass beads can be explained by the di↵erences in grain round-

ness, since the angularity of the quartz sand grains increases

particle interlocking and force chain stability. This is also

the reason for the relatively low shear strength values of the

numerical material, which consists of perfect spheres. The

magnitude of the dilation is expected to be linked to the

thickness of the shear zone. As experimentally demonstrated

by Mueth and others (2000), materials of spherical grains ex-

hibit deformation in more narrow shear-bands than aspherical

shapes. In these experiments, the angular to subangular quartz

grains show the highest values of shear stress and dilation.

The well rounded glass beads display lower dilation and shear

strength, while the numerical material with perfect spheres

display the lowest values. The clay-rich till examined in this

study, and many other tills (Iverson and others, 1997; Tulaczyk

and others, 2000) display contraction in the early stages of

shear. Net dilation only takes place in glacial tills if they have

been previously overconsolidated, as demonstrated by two tills

with contrasting clay contents by Moore and Iverson (2002).

However, we note that although the total volume of the till

is decreasing during deformation, the shear zones may still

dilate as long as compaction outside the shear bands exceeds

the dilation. A smaller volume of till was after the shear

experiment observed to having been squeezed through the

Figure 4.8. Laterally averaged strain-depth profiles at the end of
the numerical DEM experiments with varying levels of overburden
normal stress. The individual particle values for the σ0 = 10 kPa
experiment are underlain to visualize the horizontal variance of
the displacement. The total shear distance is 0.738 m.Damsgaard and others: DEM modeling of subglacial sediment deformation 9
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Fig. 10: Stress distribution in the non-fixed particles. Width

and color of the line segments are determined by the magnitude

of the contact normal forces (||fn||). Data from the numerical

DEM experiment (�0 = 80 kPa) at the final time step during

consolidation (upper) or shear (lower). The shear movement

in the lower plot takes place along the top boundary towards

the right. Several contacts are greatly exceeding the upper

limit of the color bar.

The stresses are distributed heterogeneously within the

material (fig. 9), along a complex network of force chains,

and mechanically inactive, volumetrically dominant zones.

Figure 10 shows the inter-particle normal force magnitudes as

lines connecting the particle centres, projected onto the plane

with along-flow axis (x1) and the vertical axis (x3), during

consolidation and shear, respectively. The orientation of force

chains tends to equal the direction of maximum compressive

Fig. 11: Strike and dip of the 50% strongest inter-particle

normal forces (fn) at the final time step of the DEM consoli-

dation (left) and DEM shear (right), both when �0 = 80 kPa,

equal angle projection.
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Fig. 12: Porosity values of horizontally integrated slabs at the

final time step in the numerical experiments.

stress, consisting of the e↵ective normal- and shear stress (fig.

11), where the orientation of the strongest particle contact

forces are plotted. During consolidation, the contact forces are

dominantly oriented vertically, horizontally scattered isotropi-

cally. During shear, the mean direction is instead relocated

in the direction of shear, with a smaller variance. Since the

force chains temporally carry stresses of high magnitude, they

are e↵ective mechanisms for grain crushing, even spatially

distant from the shear zone. Yet, grain size modification due

to particle abrasion is likely favored inside the shear zone,

where the relative movement between particles is largest. Grain

bridges in glacial tills are mainly aligned oblique to the shear

direction, and are often associated with crushed grains (Hooke

and Iverson, 1995; Iverson and others, 1996; Larsen and others,

2007).

Dynamics of dilation and porosity

As a consequence of the relative movement of the particles

during stage-2 shear, the sample initially expands as the poros-

ity increases when particles move past each other (Reynolds,

1885). After the critical state is reached, the dilation stabi-

lizes, and the dilated shear zone exerts a net strain softening

e↵ect. Frequent fluctuations of the assemblage thickness are a

product of shifting configurations of the force chains, as noted

by e.g. Iverson and others (1996); Miller and others (1996);

Aharonov and Sparks (2002) and (Li and Aydin, 2010), and

these are bound to decrease with an increasing number of

particles (Li and Aydin, 2010).

The porosity change is strongly connected to the defor-

mation profile (fig. 8 and 12), since shear strain increases

the porosity in the absence of particle crushing. Overall, the

experiments with the lowest deviatoric normal stress have the

highest porosity values in the upper zone of the material, which

is a consequence of the shallow band of active deformation.

The experiments with high deviatoric normal stresses show

a deeper increase of porosity, owing to the more distributed

deformation. The magnitude of the total dilation increases

with the value of the deviatoric normal stress.

The implications of the volumetric changes during forma-

tion of shear bands are di↵erent when the granular material is

saturated with porewater. The pore fluid can have two oppo-

site e↵ects depending on the degree of grain crushing in the

shear zone. Without significant grain crushing, the shear zone

dilates under deformation, which decreases the local porewater

pressure, increases the e↵ective pressure, and causes dilatant

hardening (Iverson and others, 1998). Such hardening e↵ects

Figure 4.9. Porosity values of horizontally integrated slabs at the
final time step in the numerical experiments.

depending on which kinematic response requires the minimal amount of activation
energy.

4.5 Discussion

Force chains

Granular materials are by definition heterogeneous, and the force network provid-
ing the stability of the system is non-uniform (Jaeger et al., 1996). The force net-
work is represented by the force chains that transmit stress through grain bridges
or arches. Previous investigations have established that the mesh size of the force
network has a characteristic size, about ten times larger than the grain diameter, al-
though sensitive to grain size variance (Clement, 1999). It is likely that this length
scale of the force network also defines the minimum thickness of shear zones.
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Figure 4.10. Particle kinematics inside the shear zone at
three stages during the DEM experiment with σ0 = 80 kPa.
The particles are visualized as discs according to the intersec-
tion with the center (x1,x3)-plane. The particle color corre-
sponds to the contact pressure, rotational velocities are indi-
cated using black arrows, linear velocities with white arrows, and
inter-particle slip velocities are shown with green arrows start-
ing at the contact centre. Particles spinning positively around
the second axis are marked with a black border. It should
be noted that with this type of planar visualization the poros-
ity appears larger than the true value, and the spherical parti-
cles may be in physical contact although they appear not to be
here. A supplementary animation is available at http://users-
cs.au.dk/adc/files/shear-80kPa-plane.mp4 (53 MB).

Our numerical experiments demonstrate that the force chains carry stress of
high magnitude. Although particle breakage is not part of the modelling method,
the DEM simulations hence support the hypothesis that force chains are effec-
tive mechanisms of grain crushing, even distant from the rapidly deforming shear
zones. Yet, grain size modification due to particle abrasion is likely favored inside
the shear zone, where the relative movement between particles is greatest. Grain
bridges in till are mainly aligned oblique to the shear direction, and are often asso-
ciated with crushed grains (Hooke and Iverson, 1995; Iverson et al., 1996; Larsen
et al., 2007). Hooke and Iverson (1995) and Iverson et al. (1996) showed that
failure of grains in force chain networks during shear significantly modifies the
particle sizes, leading to a self-similar, fractal grain size distribution. As the grain
sizes decrease, the finer components become more active in distributing stresses
through the system. Since the mesh spacing in the stress network is a function of
the typical grain size, the force chain distance decreases, and the stress network
becomes more homogeneous with less stress fluctuation (Iverson et al., 1996; Mor-
gan, 1999; Iverson, 2010).

The failure of force chains in a subglacial bed can be caused by particle crush-
ing, particle rotation, inter-particle sliding or a change in the stress field, for in-
stance induced by changes in subglacial hydrology. If the bed fails to establish a
new force chain, exerting flow-resistant friction to the glacier base, the force chain
failure can result in a propagating instability, possibly resulting in a glacial slip
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event. Clearly, the description of slip initiation and failure propagation in stress-
limited systems requires more attention in future studies. A numerical DEM model,
perhaps extended by angular particles for increased particle interlocking, is ideal
for such studies, since it allows for a detailed quantification of the internal sedi-
ment mechanics at seismic time scales.

Variability of the vertical strain distribution

Our DEM simulations demonstrate a clear relationship between the applied nor-
mal stress and the depth of deformation (Figure 4.8). This result can be explained
by considering the frictional strength of particle contacts. According to Mohr-
Coulomb theory, the frictional strength of particle contacts depends on pressure,
and force chain stability is therefore strengthened by high levels of normal stress.
The strong force chains transmit stress over large distances, causing weak contact
planes at greater depths to fail and the thickness of the deforming zone to increase.

In situ measurements of subglacial water pressure (e.g. Engelhardt et al., 1990;
Murray and Clarke, 1995; Hooke et al., 1997; Engelhardt and Kamb, 1997; Hart
et al., 2009; Bartholomaus et al., 2011), and sedimentary indications of palaeo-
subglacial conditions (Piotrowski and Tulaczyk, 1999; Boyce and Eyles, 2000;
Larsen et al., 2004; Piotrowski et al., 2001; Piotrowski et al., 2006), show that
the magnitude of the porewater pressure often lies close to the ice overburden
pressure, modulated by diurnal and seasonal variations. In such cases, our nu-
merical results suggest a deformation profile of convex shape (Figure 4.8). The
subglacial transport rate of a warm-based glacier with a well-developed drainage
system, resting on a granular bed, thus seems to be controlled by the value of
the normal stress, the effective diameter of the granular material, and the basal
velocity. The granular frictional mechanisms included here are, however, not suf-
ficient to explain very thick deformation profiles, which may be due to thermal
effects, ice-bed interface (IBI) roughness, varying lithology, or hydrological feed-
backs such as dilative hardening (e.g. Iverson et al., 1998; Evans et al., 2006; Kjær
et al., 2006; Rathbun et al., 2013). However, the DEM results confirm that convex-
upward displacement profiles are possible in Mohr-Coulomb granular materials, as
also demonstrated by Tulaczyk et al. (2000a) and Iverson and Iverson (2001).

Dynamics of dilation and porosity

As a consequence of the relative movement of grains, normally consolidated gran-
ular materials initialy dilates during shear (Reynolds, 1885). The dilation stops
when a critical stage is reached. Our numerical DEM setup behaves similarly. Fur-
thermore, shifting configurations of the force chains cause frequent fluctuations of
the DEM model thickness, although these are bound to decrease with increasing
number of particles (Iverson et al., 1996; Morgan, 1999; Li and Aydin, 2010).

The implications of volumetric changes during shear band formation depend
on the influence and properties of pore fluid flow. Importantly, the pore fluid can
have two opposite effects, depending on the degree of grain crushing in the shear
zone. Without significant grain crushing, the shear zone dilates under deforma-
tion. If the strain rate is sufficiently high, relative to the hydraulic permeability of
the material, deformation decreases the local porewater pressure, which in turn
increases the effective pressure. This increase in normal stress strengthens the ma-
terial (Eq. 4.2) and causes dilatant hardening (Iverson et al., 1998). Such hard-
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ening effects may drive migration of the shear zone. In contrast, shear zones may
contract if grain crushing allows for repacking of the gains (Wafid et al., 2004;
Iverson et al., 2010). This contraction lowers the shear strength because of the
porewater pressure increases (Eq. 4.2). Furthermore, the fine-grained products of
widespread grain crushing may accelerate this effect by decreasing the hydraulic

conductivity and lowering the excess porewater pressure dissipation rate (Okada
et al., 2004; Iverson et al., 2010). The effect of such strain induced softening is to
stabilize the active shear zones.

In the absence of grain crushing and pore fluid transport, the DEM experiments
indicate that the decrease of hydraulic pressure internally in the shear zone is
a function of normal stress (Figure 4.9). A low level of normal stress results in
the formation of a narrow shear zone with a highly reduced hydraulic pressure,
whereas higher levels of normal stress result in a smaller pressure decrease. Still,
the total deficit of hydraulic pressure is greater under high normal stresss because it
affects a much thicker zone (Figure 4.4, bottom). The effects of dilatant hardening
are thus expected to be stronger under higher normal stresses.

Our future numerical studies will focus on the mechanical interaction with a
simulated pore fluid, by incorporating a full two-way coupling between pore fluid
flow and the granular skeleton. This coupled methodology will allow small-scale
investigations of the two-way interaction of moving grains and the inter-particle
fluid, even with complex geometries of the upper, moving boundary, such as during
ploughing (Tulaczyk et al., 2001; Thomason and Iverson, 2008). As highlighted
by Iverson et al. (1998), the rheology of a grain-fluid mixture is likely to contain
viscous components if the characteristic time scale for the diffusion of hydraulic
pressures is smaller than the characteristic time scale for dilation.

Particle rotation

The particles in the numerical setup can have both translational and rotational
movement components. Angular accelerations, velocities, and positions are han-
dled as quaternions (three-dimensional rotation), whereby the direction of the
quaternion denotes the rotational axis, and the quaternion length relates to the
rotation magnitude. The rotation follows the right-hand rule, implying that a par-
ticle with an angular velocity of ω= {0, 1,0} rad s−1 represents a rotation around
the second axis, where the upper tangential velocity points in the positive direction
of the first axis.

Unidirectional rolling is assumed to dominate particle transport in the concep-
tual model of Meer (1997). However, our DEM experiments demonstrate that par-
ticles in contact prefer to roll in opposite directions in order to avoid large contact
slips (Figure 4.10). Since the tangential contact strength is scaled by the mag-
nitude of the normal force (Eq. 4.8), contacts between grains situated in a force
chain are mechanically strong. For this reason, grains in force chains prefer to
roll in opposite direction in order to avoid slips, while slip on contacts in the adja-
cent, low pressure areas are more frequent. During the small range of shear strain
increments displayed in Figure 4.10, the stress-bearing force network is slightly
relocated, and several grains change rotational direction. This shows how the
micromechanical system to a large extent reconfigures itself through a relatively
small range of shear strain values. Yet, it should be noted that the spheres of the
numerical experiment likely favor rotation instead of slip, due to the absence of
interlocking caused by grain angularity and elongation.
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Fig. 13: Porosity values of horizontally integrated slabs at the

final time step in the numerical experiments.

The porosity change is strongly connected to the defor-

mation profile (fig. 9 and 13), since shear strain increases

the porosity in the absence of particle crushing. Overall, the

experiments with the lowest deviatoric normal stress have the

highest porosity values in the upper zone of the material, which

is a consequence of the shallow band of active deformation.

The experiments with high deviatoric normal stresses show

a deeper increase of porosity, owing to the more distributed

deformation. The magnitude of the total dilation increases

with the value of the deviatoric normal stress.

The implications of the volumetric changes during forma-

tion of shear bands are di↵erent when the granular material is

saturated with porewater. The pore fluid can have two oppo-

site e↵ects depending on the degree of grain crushing in the

shear zone. Without significant grain crushing, the shear zone

dilates under deformation, which decreases the local porewater

pressure, increases the e↵ective pressure, and causes dilatant

hardening (Iverson and others, 1998). Such hardening e↵ects

may possibly drive migration of the shear zone, if the hy-

draulic conductivity is su�ciently low. In landslide mechanics

investigations carried out by Wafid and others (2004) with a

ring-shear device, normal stresses of 180 kPa were applied to

an undrained mature quartz material. A high amount of grain-

crushing took place, and the shear zone underwent contraction.

This caused a local increase of porewater pressure, and thus a

shear strength decrease (eq. 8). The grain crushing also caused

a decrease in hydraulic conductivity by production of finer

material, and thus lowered the permeability and the excess

porewater pressure dissipation rate (Okada and others, 2004).

This tendency of strain softening stabilizes the placement of

the active shear zone. Our future numerical studies will focus

on the mechanical interaction with a simulated pore fluid, by

incorporating a full two-way coupling to the granular skeleton.

Particle rotation

As previously mentioned, the particles of our numerical setup

can have both translational and rotational movement compo-

nents. The angular accelerations, velocities, and positions are

handled as quaternions (three-dimensional rotation), where

the direction of the quaternion denotes the rotational axis, and

the quaternion length relates to the magnitude of rotation. The

rotation follows the right-hand rule, implying that a particle

with an angular velocity of ! = {0, 1, 0} rad s�1 represents a

rotation around the second axis, where the upper tangential

velocity points in the positive direction of the first axis.
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Fig. 15: Scatter plots of the particle rotational positions, de-

composed per Euclidean axis, against the vertical position of

the particles. Data from the last time step in the numerical

DEM experiment with �0 = 80 kPa.

Figure 14 demonstrates that particles in contact prefer to

roll in opposite directions instead of performing large contact

slips under unidirectional rolling predicted in the conceptual

model by van der Meer (1997). Since the tangential contact

strength is determined by the magnitude of the normal force

(eq. 6), contacts between grains situated in force bearing chains

are mechanically strong. For this reason grains in force chains

will tend to roll in opposite direction to avoid slips, while slips

on contacts with grains in the adjacent, low pressure areas

are more frequent. During the small range of shear strain

increments displayed in the figure, the stress-bearing force

network is slightly relocated, and several grains change rota-

tional direction. This shows how the micromechanical system

to a large extent reconfigures itself rather drastically through

a relatively small range of shear strain values. However, it

should be noted that the spheres in the numerical experiment

likely favor rotation instead of slip, due to the absence of

interlocking caused by grain angularities. The shear strain

in the simulated material is accommodated by polyphase

deformation, here a combination of rotations and frictional

failures on the inter-particle contact interfaces.

Figure 15 shows the trend with depth of the three-compo-

nent rotational axes of the non-fixed particles at the end of

the shear experiment with �0 = 80 kPa. The angular position

is for each particle calculated as the temporal integral of

the rotational velocities, i.e. ⌦i =
R t
0 !idt. The estimated

mean values per Euclidean axis of the rotational axes are

µ̂(⌦) = {�0.0027, 0.50,�0.0053} rad s�1, with empirical vari-

ances of s2(⌦) = {0.76, 1.1, 0.68}. These results illustrate that

the mean direction of the rotational axes has a strain signature,

and that this trend in rotational direction is already developed

at shear strain � = 1. The relatively large variance values

indicate, however, that rotational microstructures left in the

deformed sediment are to be expected in any orientation, as

the particles in this setup tend to avoid inter-particle frictional

slips. The direction of shear strain can thus only theoretically

be deduced from a very large dataset of rotational axis ori-

entations. In glacial tills rotational structures are often very

abundant (e.g. van der Meer, 1993; Menzies, 2000; Hiemstra

and Rijsdijk, 2003) and they have been identified in thin sec-

tions taken both parallel and perpendicular to the shear stress

direction, suggesting that they may form in various stress

regimes, and with an inherent variability in the orientation of

the rotational axes.

Figure 4.11. Scatter plots of the particle rotation, decomposed
along each Euclidean axis. The results shown are from the last
time step of the numerical DEM experiment with σ0 = 80 kPa.

The angular position can for each particle be calculated by integrating the
rotational velocity, i.e. Ωi =

∫ t

0 ω
id t. For the experiment with σ0 = 80 kPa,

the estimated mean values of the total rotation per Euclidean axis are µ̂(Ω) =
{−0.0027, 0.50,−0.0053} rad s−1, with empirical variances of s2(Ω) = {0.76,1.1, 0.68}
(Figure 4.11). These results illustrate that the mean direction of the rotational
axes has a strain signature, and that this trend in rotational direction is already
developed at a shear strain of γ= 1. The relatively large variance values indicate,
however, that rotational microstructures are to be expected in any orientation. The
direction of shear strain can thus theoretically be deduced only from a very large
dataset of rotational axis orientations. Rotational structures are often very abun-
dant in tills (e.g. Meer, 1993; Menzies, 2000; Hiemstra and Rijsdijk, 2003) and
they have been identified in thin sections both parallel and perpendicular to the
shear stress direction, suggesting that they may form in various stress regimes and
with an inherent variability in the orientation of the rotational axes.

Comparison to laboratory ring-shear experiments

Ring-shear machines have previously been used to investigate the mechanical be-
havior of till (e.g. Iverson et al., 1996; Iverson et al., 1997a; Iverson et al., 1998;
Tulaczyk et al., 2000a; Müller and Schlüchter, 2000; Moore and Iverson, 2002),
and the development of strain signatures (e.g. Iverson et al., 1996; Iverson et
al., 1997a; Hooyer and Iverson, 2000b; Hooyer and Iverson, 2000a; Müller and
Schlüchter, 2000; Thomason and Iverson, 2006; Larsen et al., 2006; Iverson et al.,
2008). Here, stress measurements from ring-shear experiments are compared to
the simulated DEM granular behavior. Our ring-shear apparatus (Figure 4.12, see
also Larsen et al. (2006) and Bateman et al. (2012)) has a sample chamber vol-
ume of 14480 cm3, a chamber width of 12.0 cm, and a chamber height of 8.0 cm.
The centerline diameter is 54.0 cm. The upper platen is rotationally fixed, while
the lower platen is moved at a constant velocity (u = 1.67 × 10−5 m s−1 = 1.0
mm min−1). To quantify the distribution of strain, we inserted coarse (2–4 mm),
angular quartz and feldspar grains as strain markers.

The geometry of the numerical setup (Figure 4.3) and the ring-shear apparatus
(Figure 4.12) both allow infinite shear strains, owing to the absence of boundaries
in the shear direction. On the other hand, factors that are likely to produce sig-
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Fig. 4: Geometry of the laboratory ring-shear apparatus sam-

ple chamber, which is filled with sediment during the shear

tests. The dotted line marks the shearing gap between the sta-

tionary upper loading platen and sidewalls, and the equivalent,

rotating, lower components.

COMPARISON TO LABORATORY
EXPERIMENTS

Ring-shear machines have previously with great success been

used to investigate the mechanical behaviour of glacial till

(e.g. Iverson and others, 1996, 1997, 1998; Tulaczyk and oth-

ers, 2000; Müller and Schlüchter, 2000; Moore and Iverson,

2002), as well as the development of strain signatures (e.g.

Iverson and others, 1996, 1997; Hooyer and Iverson, 2000b,a;

Müller and Schlüchter, 2000; Thomason and Iverson, 2006;

Larsen and others, 2006; Iverson and others, 2008). Here,

stress measurements from ring-shear experiments are used as

a method of validating the simulated granular behaviour. The

ring-shear apparatus (fig. 4) used has a sample chamber vol-

ume of 14 480 cm3, a chamber width of 12.0 cm and -height of

8.0 cm. The centerline diameter is 54.0 cm. The upper platen

is rotationally fixed, while the lower platen is moved at a

constant velocity (u). The shear stress (⌧) is measured by two

pressure transducers, which determine the force required for

keeping the upper platen in place. A deviatoric normal stress

(�0) is exerted onto the chamber material by an electrical

servo, mechanically connected through a transition system.

The e↵ective normal stress (�0) is measured at a centered

transducer, embedded in the axial mounting. The dilation

(�h) is measured at the outer edge of the chamber by three

displacement transducers. The experiments are performed

under dry conditions.

In order to provide a broad spectrum of granular behaviour

to compare with the numerical results, simple granular materi-

als are first sheared at a fixed velocity, under di↵erent normal

deviatoric stresses. The first material consists of artificial,

spherical glass beads with a mean grain size of approximately

4 ⇥ 10�4 m (best fitted with a log-normal distribution with

µ = �5.5 and � = 0.21). The second material is industrially

sorted, angular to subangular, aeolian quartz sand, also with a

mean grain size of approximately 4 ⇥ 10�4 m (best log-normal

fit with µ = �5.5 and � = 0.26). When examined under a

microscope, the majority of the glass beads are spherical, how-

ever with some occurrences of imperfections, such as conjoined

beads. These relatively simple, granular materials are chosen

because they closely resemble the spherical, non-cohesive par-

ticles of the numerical setup.

To quantify the shear zone thickness and the e↵ect of grain

crushing, the sand and the glass beads are sheared for 760 mm

with normal stresses increasing in seven steps in the range from

5 kPa to 140 kPa. Without disturbing the rest of the sample,

strain markers are inserted as a vertical column, perpendicular

to the shear direction, and sheared for another 200 mm at an

deviatoric normal stress of 140 kPa. The strain markers are

excavated by applying a pad with double coated tape onto the

sediment surface. This is performed throughout the thickness

of the sediment, and the tape pieces are scanned and analyzed

using ImageJ (Rasband, 1997).

In order to provide a link to real subglacial materials, the

stress and dilation data are compared to the results from a

previous Mohr-Coulomb failure study on a late Weichselian

basal till from the Scandinavian Ice Sheet (SU3 in Tylmann

and others, 2013), performed in the same ring-shear apparatus,

although under water-saturated conditions with a hydrological

connection to atmospheric pressure. The till is poorly sorted

and bimodal, with peaks in the sand and silt fractions. Before

shearing, it was remolded, grains larger than 8 mm in diameter

removed, and consolidated until no further compaction was

detectable.

Mohr-Coulomb failure analysis

Glacial tills are known to deform according to the Mohr-

Coulomb failure criteron (e.g. Boulton and Jones, 1979; Hooke

and others, 1997; Clarke, 2005; Iverson, 2010). For Mohr-

Coulomb materials, the macromechanical angle of internal

friction (�) and cohesion (C) are defined from the linear

representation of the value of the material peak or ultimate

shear strength (⌧p,u) under a range of deviatoric normal stress

magnitudes (�0):

⌧p,u = C + �0 tan(�) (8)

The shear strength of most materials depends on the deforma-

tion history. Materials that previously were only consolidated,

and thus in a pre-failure state, typically have a higher, peak

value of shear strength (⌧p) than materials in the critical state

(Schofield and Wroth, 1968) with a fully developed, active

shear zone and a residual, ultimate shear strength (⌧u).

To find the Mohr-Coulomb parameters for the three lab-

oratory materials, shear tests are performed with di↵erent

deviatoric normal stress values. The material was homogenized

before each test, with the purpose of resetting the material to

a pre-failure stage. To avoid that grain crushing dominates the

geotechnical behaviour, the glass beads are not subjected to

normal stresses greater than 80 kPa. Likewise, similar failure

tests are performed with the numerical DEM model, allowing

comparison between the stress dynamics and macroscopical

parameters of the simulated sediment and the laboratory

materials.

The DEM simulation parameters are chosen to represent

the laboratory values as closely as possible, however with some

clear di↵erences: 1) In the simulations the upper boundary,

instead of the lower boundary, is moved. This configuration

is chosen to reflect real subglacial conditions, and should

not a↵ect the geotechnical behaviour. 2) Unlike the DEM

particles, the laboratory material experiences friction against

the sidewalls in the ring-shear chamber. 3) For completing

the simulations in a reasonable time span, the particle sizes

are larger, and the total number of particles is much lower

than the number of particles found in laboratory ring-shear

experiments and subglacial deforming beds. The rheology and

mechanical properties are however scale-independent by a

large extent (Tulaczyk, 2006). 4) The numerical particles are

indestructible, so it is not possible to include crushing and

abrasion during experiments.

Figure 4.12. Geometry of the laboratory ring-shear apparatus
sample chamber, which is filled with sediment during the shear
tests. The dotted line marks the shearing gap in the side walls be-
tween the stationary upper loading platen and the lower mobile
part.

Table 4.2. Fitted values of the Mohr-Coulomb relationship (eq.
2ultimate (u) failure stages of the materials.

Material φp [◦] Cp [kPa] φu [◦] Cu [kPa]
Quartz sand 45 3.7 44 2.4
Glass beads 37 1.8 35 1.5
DEM 32 1.2 22 0.51
Till 18 3.1 18 0.69

nificant differences between laboratory and numerical experiments are associated
with side wall friction in the ring-shear sample chamber, the elastic response and
acceleration of the mechanical parts in the ring-shear apparatus, and the difference
in particle numbers.

In order to provide a wide framework for comparison, we performed laboratory
experiments with several types of materials. The first material consisted of spher-
ical glass beads with a mean grain size of approximately 4.0× 10−4 m (best fitted
with a log-normal distribution with µ= −5.5 and σ = 0.21). The second material
used was an industrially sorted, angular to subangular, aeolian quartz sand, also
with a mean grain size of approximately 4.0 × 10−4 m (best log-normal fit with
µ = −5.5 and σ = 0.26). The experiments on these materials were performed
under dry conditions. Also used for the comparison study was a previous Mohr-
Coulomb failure analysis on a Weichselian-age basal till from the Scandinavian Ice
Sheet (SU3 in Tylmann et al., 2013), performed in the same ring-shear apparatus.
The till was sheared under water-saturated conditions with a hydrological connec-
tion through filters in the chamber top and bottom to atmospheric pressure. The
till was poorly sorted with a bimodal grain size distribution with peaks in the sand
and silt fractions.

We use the laboratory results to compare the simulated DEM granular behavior
with that real materials under similar conditions. Due to the side wall friction, the
magnitude of the material shear strength is likely to be higher in the laboratory
materials. We can, however, compare the stress-strain dynamics observed by the
two methods (Figure 4.13) and attempt to explain the differences in the material
behavior (Figure 4.14, Table 4.2), bearing in mind the aforementioned caveats.

The shearing of a granular material from a pre-failure, normal consolidated
state can be subdivided into multiple stages (cf. Li and Aydin, 2010), which we
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RESULTS

The laboratory quartz sand is first sheared at three di↵er-

ent velocities (u = 1.67 ⇥ 10�6 m s�1, 8.3 ⇥ 10�6 m s�1 and

1.67 ⇥ 10�5 m s�1) in order to constrain the relationship be-

tween the shear strength and a range of strain rates. Since

no significant di↵erence in shear strength is observed, the hy-

pothesis of a viscous component in the rheology is discarded,

and subsequent shear experiments are performed only for u

= 1.67 ⇥ 10�5 m s�1 (corresponding to 1.0 mm min�1).

For the numerical DEM experiments, the shearing velocity

is progressively lowered from 0.0369 m s�1 to 0.003 69 m s�1,

until the results converged and the material deformed in a

pseudo-static style without noticeable e↵ects of particle inertia.

Below these velocities, which exceed the deformation rate

under glaciers by several orders of magnitude, the mechanical

behaviour of the numerical model is thus also rate independent.

Table 1 shows the values of the micromechanical- and ge-

ometrical parameters used in the DEM shear experiments,

which gave a reasonable result in the Mohr-Coulomb fail-

ure analysis. During the pre-shear consolidation phases, the

laboratory- and numerical materials compact with exponen-

tially decaying volumetric strain rates, as typical in granular

materials, with reversible elastic- and permanent plastic de-

formation components (Nedderman, 1992) and the length of

the consolidation period influencing the shear strength of the

material (Scholz, 1998; Rathbun and others, 2008). In figure

5, stress- and dilation data from shear experiments with a

normal stress of 80 kPa to 85 kPa on the three laboratory ma-

terials and the numerical material are shown for comparative

purposes.

For all the materials tested, the peak shear strength (⌧p)

is reaches at a low level of shear strain (�). The quartz sand

reaches it’s peak shear strength at a � = 0.24, the glass beads

peaks at � = 0.1, while the strength of the numerical material

peaks at � = 0.04. The glacial till reaches it’s peak shear

strength at � = 0.01.

The fluctuations in the glass bead shear stress data after

the peak shear strength value are interpreted as an e↵ect of

high amounts of grain crushing, which is audible outside the

ring-shear apparatus during the experiment. The glass beads

are mechanically weaker than the monocrystals of the quartz

sand, and thus more likely to fracture.

Figure 6 shows the collective results of the failure analysis.

Fitting eq. 8 to the peak- and ultimate failure stress data

results in �p = 45�, Cp = 3.7 kPa, �u = 44� and Cu = 2.4 kPa

for the quartz sand, �p = 37�, Cp = 1.8 kPa, �u = 35�, Cu

= 1.5 kPa for the glass beads, �p = 32�, Cp = 1.2 kPa, �u

= 22�, Cu = 0.51 kPa for the numerical DEM material, and

�p = 18�, Cp = 3.1 kPa, �u = 18�, Cu = 0.69 kPa for the

till. The linear correlations confirm that the tested materials

deform according to the Mohr-Coulomb theory.

The positions of the strain markers are used for mapping

the shear zones in the glass beads and the quartz sand. This

is done for �0 = 85 kPa, where the shear zone is determined

to be approximately 4 mm thick in the glass beads, and 6 mm

thick in the quartz sand (fig. 7). The material is sampled

above, inside, and below the shear zone, and the grain size

distributions are analyzed using a laser di↵raction instrument.

No significant di↵erences in the grain size distributions are

found between the three samples in each material. During

localized deformation in the ring-shear, the mixing zone is

located vertically near the shearing gap (fig. 7). In the numer-
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Figure 4.13. Shear stress (upper panel) and dilation (lower
panel) as a function of shear strain, recorded during the labora-
tory shear tests on quartz sand (QS), glass beads (GB), till, and
the numerical discrete element method material DEM. The nor-
mal stress is σ0 = 80 kPa for all tests, except for the till, where
σ0 = 85 kPa. The till shear stress values are scaled to account for
the differences in normal stress.

recognise in both the laboratory and the numerical setting:
Stage-1: The initial shearing motion results in contraction, caused by the combined
effect of increased elastic deformation, and reorganization of the grains. Both ef-
fects are caused by the increased magnitude and reorientation of the maximum
compressive stress (σ′ + τ). The increase in maximum compressive stress pro-
motes consolidation, and decreases porosity (Nedderman, 1992; Tulaczyk et al.,
2000a). The elastic response is increased if the grains are angular, which can sta-
bilize the inter-grain contacts mechanically (Nedderman, 1992; Weatherley et al.,
2012). The numerical DEM material does not exhibit contraction during stage-1
shear, since particles are spherical and for this reason cannot develop interlocking.
The glass beads and the quartz sand both display a transient contraction during
this stage. Owing to the angularity of grains, the quartz sand displays the strongest
contraction and the longest duration of this stage.
Stage-2: The material dilates due to relative particle movement (Reynolds, 1885;
Mead, 1925), and exhibits its peak shear strength value (τp). The shear zone
evolves into a high-porosity layer (Gennes, 1999). The numerical material, the
glass beads, and the quartz sand dilate during this stage. The numerical material
dilates to approximately 0.75 grain diameters, the glass beads dilate to 1.5 grain
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6 Damsgaard and others: DEM modeling of subglacial sediment deformation

RESULTS

The laboratory quartz sand is first sheared at three di↵er-

ent velocities (u = 1.67 ⇥ 10�6 m s�1, 8.3 ⇥ 10�6 m s�1 and

1.67 ⇥ 10�5 m s�1) in order to constrain the relationship be-

tween the shear strength and a range of strain rates. Since

no significant di↵erence in shear strength is observed, the hy-

pothesis of a viscous component in the rheology is discarded,

and subsequent shear experiments are performed only for u

= 1.67 ⇥ 10�5 m s�1 (corresponding to 1.0 mm min�1).

For the numerical DEM experiments, the shearing velocity

is progressively lowered from 0.0369 m s�1 to 0.003 69 m s�1,

until the results converged and the material deformed in a

pseudo-static style without noticeable e↵ects of particle inertia.

Below these velocities, which exceed the deformation rate

under glaciers by several orders of magnitude, the mechanical

behaviour of the numerical model is thus also rate independent.

Table 1 shows the values of the micromechanical- and ge-

ometrical parameters used in the DEM shear experiments,

which gave a reasonable result in the Mohr-Coulomb fail-

ure analysis. During the pre-shear consolidation phases, the

laboratory- and numerical materials compact with exponen-

tially decaying volumetric strain rates, as typical in granular

materials, with reversible elastic- and permanent plastic de-

formation components (Nedderman, 1992) and the length of

the consolidation period influencing the shear strength of the

material (Scholz, 1998; Rathbun and others, 2008). In figure

5, stress- and dilation data from shear experiments with a

normal stress of 80 kPa to 85 kPa on the three laboratory ma-

terials and the numerical material are shown for comparative

purposes.

For all the materials tested, the peak shear strength (⌧p)

is reaches at a low level of shear strain (�). The quartz sand

reaches it’s peak shear strength at a � = 0.24, the glass beads

peaks at � = 0.1, while the strength of the numerical material

peaks at � = 0.04. The glacial till reaches it’s peak shear

strength at � = 0.01.

The fluctuations in the glass bead shear stress data after

the peak shear strength value are interpreted as an e↵ect of

high amounts of grain crushing, which is audible outside the

ring-shear apparatus during the experiment. The glass beads

are mechanically weaker than the monocrystals of the quartz

sand, and thus more likely to fracture.

Figure 6 shows the collective results of the failure analysis.

Fitting eq. 8 to the peak- and ultimate failure stress data

results in �p = 45�, Cp = 3.7 kPa, �u = 44� and Cu = 2.4 kPa

for the quartz sand, �p = 37�, Cp = 1.8 kPa, �u = 35�, Cu

= 1.5 kPa for the glass beads, �p = 32�, Cp = 1.2 kPa, �u

= 22�, Cu = 0.51 kPa for the numerical DEM material, and

�p = 18�, Cp = 3.1 kPa, �u = 18�, Cu = 0.69 kPa for the

till. The linear correlations confirm that the tested materials

deform according to the Mohr-Coulomb theory.

The positions of the strain markers are used for mapping

the shear zones in the glass beads and the quartz sand. This

is done for �0 = 85 kPa, where the shear zone is determined

to be approximately 4 mm thick in the glass beads, and 6 mm

thick in the quartz sand (fig. 7). The material is sampled

above, inside, and below the shear zone, and the grain size

distributions are analyzed using a laser di↵raction instrument.

No significant di↵erences in the grain size distributions are

found between the three samples in each material. During

localized deformation in the ring-shear, the mixing zone is

located vertically near the shearing gap (fig. 7). In the numer-
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Figure 4.14. Mohr-Coulomb failure analysis of three laboratory
granular materials and one numerical material. Equation 2 was
fitted to the (σ0,τp,u)-data sets using the nonlinear least-squares
Marquardt-Levenberg algorithm. Upper: Peak shear strength val-
ues (τp). Lower: Ultimate shear strength values (τu).

diameters, the quartz sand to 2.0 grain diameters. The till continues to contract.
This contraction is caused by the volumetric decrease due to micro and macro
fabric development, and subsequent diffusion of the increased internal hydraulic
pressures. In addition to this, a small volume of till was after the experiments ob-
served to having been squeezed out of the sample chamber.
Stage-3: In the final stage, the shear zone becomes fully developed, as the mate-
rial reaches the critical state. The shear strength decreases to the ultimate value
(τu) and dilation stops (Schofield and Wroth, 1968). This behavior is observed in
the numerical material, the quartz sand, and the till. The materials display no low-
frequency volumetric and shear strength changes, only high-frequency fluctuations
caused by fracturing of the grains or reorganization of the internal force-bearing
network (Iverson et al., 1996; Li and Aydin, 2010). As observed in similar exper-
iments (Mair et al., 2002), the glass beads show stick-slip behavior at this stage,
owing to elasticity of the apparatus. No measurable products of grain crushing are
detected, which rules out fracturing of grains as the cause of the fluctuations.

Particle shape and angularity

Comparing the stress-strain relationships of the DEM and the laboratory materi-
als highlights the importance of grain shape and angularity for the macroscopical
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4.5. Discussion

geotechnical behavior. The initial elastic response, the peak shear strength, and the
total dilation are all higher in the materials with angular grains, such as the quartz
sand. The spherical materials, such as the glass beads and the numerical DEM par-
ticles, are mechanically weaker, and show lower values of dilation. For a normal
stress of 80 kPa, the shear zone is approximately 4 mm thick in the glass beads and
6 mm thick in the quartz sand. As demonstrated by Mueth et al. (2000), spherical
and smooth particles generally exhibit deformation in narrow shear bands. The
shear strength of materials tends to increase with grain angularity (e.g. Mair et
al., 2002; Anthony and Marone, 2005; Azéma et al., 2012). The shear strength
also tends to increase with grain elongation (Azéma and Radjaï, 2010), which is
a prerequisite for fabric development (Hooyer and Iverson, 2000b; Mair et al.,
2002; Thomason and Iverson, 2006). Therefore, the simplified grain shape in the
DEM relative to real materials evidently influences the levels of stress and dilation.
Still, the Mohr-Coulomb model is equally valid for the numerical and laboratory
materials.

Future studies will focus on expanding the numerical method to simulate inter-
particle bonds (Potyondy and Cundall, 2004; Wang et al., 2006; Wang, 2009; Ober-
mayr et al., 2013). With particle bonds, it is possible to include irregularly shaped,
breakable aggregates of bonded spheres. By simulating angular particle clusters
instead of loose spheres, the initial, low-strain elastic response during stage-1 shear
may be improved due to greater inter-locking of particles inside force chains, which
is likely to increase the material shear strength. The bond functionality will also
enable studies of fabric development and modifications of grain size distribution
during progressive shear.

Particle size distribution and mineralogy

In comparison to the DEM, the laboratory materials contain a wider range of par-
ticle sizes. Morgan and Boettcher (1999) showed that in two-dimensional shear
experiments with a variety of grain size distributions, the presence of fine par-
ticles caused strain localization, which is consistent with the theory of the shear
zone thickness being a function of the grain size (Gennes, 1999; Herrmann, 2001).
Mair et al. (2002) demonstrated no significant shear strength differences between
narrow and wide grain size distributions of spherical glass beads, whereas Morgan
(1999) reported a slight shear strength decrease with the volumetric increase of
fine, but micromechanically identical particles.

Clay minerals are known to behave different than coarser granulates, and a
high clay content may therefore influence the macromechanical material behavior
significantly (Iverson et al., 1997a). Often, shear zones in clay are more narrow
due to the smaller grain size, and cohesion causes clays to deform by both fold-
ing, faulting, and fracturing (Eisenstadt and Sims, 2005). Clay particles interact
not only with mechanical repulsion upon contact, but with a variety of physico-
chemical interactions causing repulsion and attraction at different spatial config-
urations. Yao and Anandarajah (2003) introduced a methodology for simulating
clay minerals in DEM models, which will serve as a basis for future quantification
of the role of clays in glacial diamicts.
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4. DEM modeling of subglacial sediment deformation

4.6 Conclusions

The discrete element method, although parameterized by micromechanical proper-
ties, is useful for modeling the macroscopic mechanical properties of simple gran-
ular materials, sheared under dry conditions. The concept of a numerical DEM
model may complement analog experiments, since it allows a detailed investiga-
tion of the microphysics. The DEM displays dilation during deformation and self-
organizing particle kinematics. Both effects are difficult to capture in conventional
numerical models based on continuum mechanics. From numerical shear experi-
ments, we show how relatively high values of normal overburden stress result in
deep, distributed profiles of deformation and a thick zone of increased porosity.
A lower overburden stress results in relatively narrow boundary layers of defor-
mation that are characterized by high porosity. Our DEM experiments demon-
strate how stress in a granular material is heterogeneously distributed along force-
bearing particle chains. The force chains are transient in nature, but the mean
orientation of the load-bearing contacts is clearly governed by the direction of the
maximum compressive stress. We suggest that the transient stability of the force
chains represents an important aspect of subglacial sediment deformation. Particle
rotational axes tend to align with progressive shear, although closer examination
shows that particles in contact often rotate in opposite directions in order to avoid
slip along the inter-particle contact interfaces.
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5. Subglacial deformation of water saturated granular material

Abstract

The dynamics of glaciers are to a large degree governed by processes op-
erating at the ice-bed interface (IBI), and one of the primary mechanisms
of glacier flow over soft unconsolidated sediments is subglacial deformation.
However, it has proven difficult to constrain the mechanical response of sub-
glacial sediment to the shear stress of an overriding glacier. In this study, we
present a new methodology designed to simulate subglacial deformation us-
ing a coupled numerical model for computational experiments on grain-fluid
mixtures. The granular phase is simulated on a per-grain basis by the discrete
element method. The pore water is modeled as a compressible Newtonian
fluid without inertia. The numerical approach allows close monitoring of the
internal behavior under a range of conditions.

The rheology of a water-saturated granular bed may include both plastic
and rate-dependent dilatant hardening or weakening components, depending
on the rate of deformation, the material state, clay mineral content, and the
hydrological properties of the material. The influence of the fluid phase is neg-
ligible when relatively permeable sediment is deformed. However, by reducing
the local permeability, fast deformation can cause variations in the pore-fluid
pressure. The pressure variations weaken or strengthen the granular phase,
and in turn influence the distribution of shear strain with depth. In permeable
sediments the strain distribution is governed by the grain-size distribution and
effective normal stress and is typically on the order of tens of centimeters. Sig-
nificant dilatant strengthening in impermeable sediments causes deformation
to focus at the hydrologically more stable ice-bed interface, and results in a
very shallow cm-to-mm deformational depth. The amount of strengthening
felt by the glacier depends on the hydraulic conductivity at the ice-bed inter-
face. Grain-fluid feedbacks can cause complex material properties that vary
over time, and which may be of importance for glacier stick-slip behavior.

5.1 Introduction

The coupled mechanical response of ice, water and sediment can control the flow
of glaciers residing on deformable sediment (e.g. Alley et al., 1987b; Bindschadler
et al., 2001; Clarke, 2005; Bougamont et al., 2011; Turrin et al., 2014). This is
clearly expressed by ice streams in Greenland and Antarctica, where low levels of
basal friction enable high flow rates. These ice streams are of particular interest,
since they are large constituents of the polar ice sheet mass balance (e.g. Rignot
and Thomas, 2002).

Although the majority of flow-limiting friction of ice streams terminating into
ice shelves is likely provided by ice shelf buttressing (De Angelis and Skvarca,
2003; Rignot et al., 2004; Dupont and Alley, 2005), the disintegration of these ice
shelves leaves lateral (Whillans and Veen, 1997; Tulaczyk et al., 2000b; Price et al.,
2002) and basal friction (Alley, 1993; MacAyeal et al., 1995; Stokes et al., 2007;
Sergienko and Hindmarsh, 2013) as the main mechanical components resisting
the flow. A fundamental understanding of subglacial dynamics is a requirement
for our ability to predict future response of the ice sheets to climate change.

The pressure and flow of pore water in the subglacial bed can influence sub-
glacial deformation in a number of ways. Assuming a Mohr-Coulomb constitutive
relation of the basal till strength, an increase in pore water pressure weakens the
bed by reducing the effective stress, and this may facilitate basal movement if the
driving shear stresses become sufficient to overcome the sediment yield strength
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5.1. Introduction

(Kamb, 1991; Iverson et al., 1998; Tulaczyk et al., 2000a; Fischer and Clarke,
2001; Kavanaugh and Clarke, 2006).

If the hydraulic diffusivity of the bed is sufficiently low relative to the defor-
mational velocity, a modulation of the pore-water pressure at the ice-bed interface
is over time carried into the subglacial bed, resulting in variable internal yield
strength and ultimately variable shear strain rates with depth (Tulaczyk, 1999;
Tulaczyk et al., 2000a; Kavanaugh and Clarke, 2006). Owing to local volumetric
changes, variations from the hydrostatic fluid pressure distribution can be created
inside the sediment by the onset and halt of granular deformation. This influences
the local effective pressure and, in turn, the sediment yield strength (e.g. Iverson
et al., 1998).
In the case of non-planar ice-bed geometry excess pore-water pressures can de-
velop on the stoss side of objects ploughing through a subglacial bed (Iverson et
al., 1994; Iverson, 1999; Thomason and Iverson, 2008). The elevated pore-water
pressure weakens the sediment by lowering the effective stress, resulting in a net
strain-rate weakening rheology (e.g. Iverson et al., 1998; Fischer et al., 2001; Clark
et al., 2003; Iverson, 2010), which has been associated with the stick-slip behavior
of Whillans Ice Stream (Winberry et al., 2009).

Early field studies suggested a strain-rate strengthening Bingham or slightly
non-linear viscous rheology of till (Boulton and Hindmarsh, 1987), which has been
used to simplify analytical and numerical modeling of till mechanics (e.g. Alley et
al., 1987b; Hindmarsh, 1998; Fowler, 2000). Laboratory studies have, however,
favored the notion of till having a plastic, Mohr-Coulomb rheology, with a very
small rate-dependence in the case of a critical state deformation (Kamb, 1991;
Iverson et al., 1998; Tulaczyk et al., 2000a; Rathbun et al., 2008). This Mohr-
Coulomb rheology is also supported by field investigations (Truffer et al., 2000;
Kavanaugh and Clarke, 2006). On the other hand, a rate-weakening rheology is
expected in the case where obstacles plough through a soft and deformable bed
(Iverson et al., 1994; Iverson, 1999).

Both viscous and plastic rheologies are expected end-members of particle-fluid
mixtures, dependent on the deformational rate, fluid viscosity, fluid-solid volumet-
ric fraction and confining stresses. The low viscosity of water does, however, make
it easy to deform even under high strain rates and can only be expected to influence
the overall rheology of subglacial materials in a few select scenarios (e.g. Iverson,
2010). The mechanics of coupled granular–fluid mixtures have previously been
numerically investigated for studies of fluidized beds (e.g. Anderson and Jackson,
1967; Gidaspow et al., 1992; Hoomans et al., 1996; Xu and Yu, 1997; McNamara et
al., 2000; Feng and Yu, 2004; Jajcevic et al., 2013), the stability of inclined, fluid-
immersed granular materials (e.g. Topin et al., 2011; Mutabaruka et al., 2014),
mechanics during confined deformation (e.g. Goren et al., 2011; Catalano et al.,
2014), debris flow (e.g. Hutter et al., 1994; Mangeney et al., 2007; Goren et al.,
2011) and for the design of industrial components, e.g. hydrocyclones (e.g. Wang
et al., 2007; Zhou et al., 2010), or silos and hoppers (Kloss et al., 2012).

This study explores the interaction between the fluid and granular phases in
water-saturated consolidated particle assemblages undergoing slow shear defor-
mation. A dry granular assemblage deforms rate-independently in a pseudo-static
manner when deformational rates are sufficiently low (GDR-MiDi, 2004; Dams-
gaard et al., 2013). The particle-fluid mixture is in this study sheared with ve-
locities and stresses comparable to those found in subglacial settings. The com-
putational approach allows for investigating the internal granular mechanics and
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5. Subglacial deformation of water saturated granular material

feedbacks during progressive shear deformation.
In the following section, we present the details of the numerical implementa-

tion of particle-fluid flow, and describe the experimental setup. We then present
and discuss the modeled deformational properties of the particle-fluid mixture.
Finally, we analyze how the fluid influences formation of shear zones and under
which conditions deformation is rate dependent.

5.2 Methods

The granular model

We use the discrete element method (DEM) (Cundall and Strack, 1979) to sim-
ulate the granular deformation. With the DEM, particles are treated as separate,
cohesion-less entities, which interact by soft-body deformation defined by a pre-
scribed contact law. The contact mechanics are micro-mechanically parameterized.
The temporal evolution is handled by integration of the momentum equations of
translation,
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i and j are particle indexes, m is the particle mass, I is the particle rotational inertia,
x and Ω are linear and rotational particle positions, respectively. f n and f t are the
interparticle contact force vectors in the normal and tangential direction relative
to the contact interface, and f i is the fluid-particle interaction force (Fig. 5.1). n
is the inter-particle normal vector, and δn is the inter-particle overlap distance at
the contact.

The inter-particle contact forces are determined by a linear-elastic contact model.
The magnitude of the tangential force f t is limited by the Coulomb frictional co-
efficient µ (Cundall and Strack, 1979; Luding, 2008; Radjaï and Dubois, 2011;
Damsgaard et al., 2013):
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n ||
	 δi j

t

||δi j
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(5.3)

The vector δt is the tangential displacement on the inter-particle interface when
corrected for contact rotation. In the case of slip, the length of δt is adjusted to
a length consistent with Coulomb’s condition (||δt|| = µ|| f n||/kt) (Luding, 2008;
Radjaï and Dubois, 2011). The linear elasticity allows temporal integration with a
constant time step length ∆t.

The fluid model

The inter-particle fluid is handled by conventional continuum computational fluid
dynamics (CFD). The implementation follows the compressible Darcian flow model
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Figure 5.1. Schematic representation of body and surface forces
of two non-rotating and interacting particles submerged in a fluid
with a pressure gradient.

presented by Goren et al. (2011). This approach was favored over a full Navier-
Stokes solution of fluid flow (Gidaspow, 1994; Zhu et al., 2007; Zhou et al., 2010;
Kloss et al., 2012) since it allows for convenient parameterization of the hydrolog-
ical permeabilities. The model assumes insignificant fluid inertia, which is appro-
priate for the subglacial setting.

The volumetric fraction of the fluid phase (the porosity, φ) is incorporated in
the Eulerian formulations of the compressible continuity equation and momentum
equation using the local average method (Anderson and Jackson, 1967; Xu and
Yu, 1997). The Darcy constitutive equation is used for conserving momentum
(Eq. 5.5) (McNamara et al., 2000; Goren et al., 2011):
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(v f − vp)φ = −
k
µf
∇pf (5.5)

where v f is the fluid velocity, vp is the particle velocity, k is the hydraulic perme-
ability, βf is the adiabatic fluid compressibility and µf is the dynamic fluid viscosity.
The continuity equation (Eq. 5.4) is in the form of a transient diffusion equation
with the forcing term acting as a source/sink for the fluid pressure. The pressure,
pf, is the pressure deviation from the hydrostatic pressure distribution. This pres-
sure deviation is sometimes referred to as the excess pressure. We refrain from
using this term, as it may be misleading for pressures that are smaller than the
hydrostatic value.

The simulation domain is discretized in a regular rectilinear orthogonal grid.
The pressure is found using the Crank-Nicolson method of mixed explicit and im-
plicit temporal integration, which is unconditionally stable and second-order ac-
curate in time and space (e.g. Patankar, 1980; Ferziger and Perić, 2002; Press et
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5. Subglacial deformation of water saturated granular material

al., 2007). The implicit solution is obtained using the iterative Jacobi relaxation
method (e.g. Ferziger and Perić, 2002; Press et al., 2007; Gerya, 2010), which is
light on memory requirements and ideal in terms of parallelism for our graphics
processing unit (GPU) implementation, although not optimal in terms of conver-
gence. The numerical solution is continuously checked for stability by the Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1967). The partial derivatives are
approximated by finite differences.

The granular-fluid coupling

The particle and fluid algorithms interact by direct forcings (Eqs. 5.1, 5.4, and 5.5)
and through measures of porosity and permeability (Tsuji et al., 1992; Tsuji et al.,
1993; Xu et al., 2001; Zhu et al., 2007; Goren et al., 2011).

Porosity

The local porosity is determined at the fluid cell center. For a cell with a set of N
grains in its vicinity, it is determined by inverse-distance weighting the grains using
a bilinear interpolation scheme (McNamara et al., 2000; Goren et al., 2011). The
weight function s has the value 1 at the cell center and linearly decreases to 0 at a
distance equal to the cell width (∆x , Fig. 5.2):

5.2. Methods
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pf,rpf,�, k, v̄

�x

s(x i � x f)
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Figure 5.2. Left: A cell in the fluid grid. The node for pressure
(pf), the gradient of fluid pressure (rpf), porosity (�), permeabil-
ity (k), and average grain velocity (v̄) is located at the cell center.
Right: The weighting function (eq. 5.7) at various distances.

The porosity at t+1 is found by estimating the upcoming particle positions from
temporal integration of their current positions and velocities.

Permeability

Significant empirical evidence has been gathered about the proportionality be-
tween grain size and hydraulic properties of sediments (e.g. Hazen, 1911; Kozeny,
1927; Carman, 1937; Krumbein and Monk, 1943; Harleman et al., 1963; Schwartz
and Zhang, 2003). The Kozeny-Carman estimation of permeability k is commonly
used and of the form,

k =
d2

180
�3

(1��)2 (5.10)

where d is the representative grain diameter. Due to constrains on the compu-
tational time step we are unable to simulate fine grain sizes with realistic elastic
properties within a reasonable time frame. In order to give a first-order estimate of
the deformational behavior of fine-grained sediments, we therefore use a modified
version of the above relationship, where the permeability varies as a function of
the porosity and a predefined permeability pre-factor kc:

k = kc
�3

(1��)2 (5.11)

Using this approach we can simulate large particles with the hydrological proper-
ties of fine-grained materials, while retaining the effect of local porosity variations

41

Figure 5.2. Left: A cell in the fluid grid. The node for pressure
(pf), the gradient of fluid pressure (∇pf), porosity (φ), permeabil-
ity (k), and average grain velocity (v̄) are calculated at the cell
center. Right: The weight function (Eq. 5.7) at various distances.

φ(x f) = 1−
∑

i∈N siV i
g

∆x3
(5.6)

si =

¨

Π3
d=1

h

1− |x i
d−x f,d |
∆x

i

if |x i
1 − x f,1|, |x i

2 − x f,2|, |x i
3 − x f,3|<∆x

0 otherwise
(5.7)
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5.2. Methods

∆x3 is the fluid cell volume, and x f is the cell center position. Π is the product
operator. The average grain velocity at the cell center is found using the same
weighting function described above (Eq. 5.7). Additionally, large grains contribute
to the velocity with a greater magnitude:

v̄(x f) =

∑

i∈N siVg
i v i

∑

i∈N si
(5.8)

The change in porosity is the main forcing the particles excert onto the fluid
(Eq. 5.5). At time step n it is estimated by central differences for second-order
accuracy:

�

∂ φ

∂ t

�n

≈ φ
n+1 −φn−1

2∆t
(5.9)

The porosity at n+1 is found by estimating the upcoming particle positions from
temporal integration of their current positions and velocities.

Permeability

Significant empirical evidence has been gathered about the proportionality be-
tween grain size and hydraulic properties of sediments (e.g. Hazen, 1911; Kozeny,
1927; Carman, 1937; Krumbein and Monk, 1943; Harleman et al., 1963; Schwartz
and Zhang, 2003). The Kozeny-Carman estimation of permeability k is commonly
used and of the form,

k =
d2

180
φ3

(1−φ)2 (5.10)

where d is the representative grain diameter. Due to constrains on the compu-
tational time step we are unable to simulate fine grain sizes with realistic elastic
properties within a reasonable time frame. In order to give a first-order estimate of
the deformational behavior of fine-grained sediments, we therefore use a modified
version of the above relationship, where the permeability varies as a function of
the porosity and a predefined permeability pre-factor kc:

k = kc
φ3

(1−φ)2 (5.11)

Using this approach we can simulate large particles with the hydrological proper-
ties of fine-grained materials, while retaining the effect of local porosity variations
on the intrinsic permeability. We do note, however, that the dilative magnitude dur-
ing deformation is likely different for clay materials due to their plate-like shape.
Sediments with a considerable amount of arbitrarily oriented clay minerals are
likely to compact during deformation as the clay particles align to accommodate
shear strain.

Particle-fluid interaction

The dynamic coupling from the pore fluid to the solid particles acts through the
particle-fluid force ( f i) in Eq. (5.1). Our implementation of this coupling follows
the procedure outlined by Xu and Yu (1997), Feng and Yu (2004) and Zhou et al.
(2010) (scheme 3).

In a complete formulation, the interaction force on particles is composed of the
drag force, determined by semi-empirical relationships (Ergun, 1952; Wen and Yu,
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5. Subglacial deformation of water saturated granular material

1966; Gidaspow et al., 1992; Di Felice, 1994), the pressure gradient force, the vis-
cous force, as well as weaker interaction forces caused by particle rotation (Mag-
nus force), lift forces on the particles caused by fluid velocity gradients (Saffman
force), and interaction forces caused by particle acceleration (virtual mass force)
(Zhou et al., 2010).

However, initial tests using a full Navier-Stokes solution for the fluid phase
showed us that the pressure gradient force was by far the dominant interaction
force in our pseudo-static shear experiments. The drag force was the second-most
important force, but two orders of magnitude weaker than the pressure gradient
force. Since we neglect fluid inertia, we included only the pressure gradient force.
This force pulls particles towards relatively low fluid pressures and pushes them
away from relatively high pressures. The fluid pressure in our model records the
pressure difference from the hydrostatic pressure. For this reason we add a term
to the pressure gradient force, which describes the buoyancy of a fully submerged
particle as the weight of the displaced fluid:

f i = −Vg∇pf −ρfVgg (5.12)

Vg is the volume of the particle, ρf is the fluid density and g is the vector of grav-
itational acceleration. The particle-fluid interaction force is added to the sum of
linear forces per particle (Eq. 5.1). The particle force is not added to the fluid
momentum equation (Eq. 5.4) since fluid inertia is ignored. The fluid is instead
forced by variations in porosity.

Computational experiments

The computational fluid dynamics (CFD) algorithm is implemented in compute
unified device architecture (CUDA) C (NVIDIA, 2013b) in order to allow a direct in-
tegration with the GPU-based particle solver. The coupled particle-fluid code is free
software (source code available at https://github.com/anders-dc/sphere),
licensed under the GNU Public License v.3. The simulations were performed on
a GNU/Linux system with a pair of NVIDIA Tesla K20c GPUs. The experimen-
tal results are visualized using ParaView (Henderson et al., 2007) and Matplotlib
(Hunter, 2007).

The experimental setup is a rectangular volume (Fig. 5.3) where a fluid-saturated
particle assemblage deforms due to forcings imposed at the outer boundaries. We
deform the consolidated material by a constant-rate shearing motion in order to
explore the macro-mechanical shear strength under different conditions.

To determine the effects of the pore water, we perform experiments with and
without fluids, and for the experiments with fluids present, the permeability pre-
factor kc is varied to constrain the effect of the hydraulic conductivity and diffu-
sivity on the overall deformation style. The low value used for kc (3.5 × 10−15

m2) results in an intrinsic permeability of k = 1.9 × 10−16 m2 for a porosity of
0.3 (Eq. 5.11). The highest value (kc = 3.5 × 10−13 m2) matches a permeability
of 1.9× 10−14 m2. These two end-member permeabilities roughly correspond to
what Iverson et al. (1997a) and Iverson et al. (1998) estimated for the clay-rich
Two Rivers till and the clay-poor Storgläciaren till, respectively.

The lower boundary is impermeable, and a fixed fluid pressure is specified for
the top boundary. These boundary conditions imply that the simulated ice-bed
interface is a relatively permeable zone with rapid diffusion of hydrological pres-
sure, which is likely for subglacial beds with low permeability (e.g. Alley, 1989a;
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Figure 5.3. Experimental setup for the shear experiments. The
fluid cells containing the mobile top wall are given a prescribed
fixed-pressure boundary condition (ptop

f , Dirichlet). The bottom
boundary is impermeable (no flow, free slip Neumann). The fluid
grid is extended upwards to allow for dilation and movement of
the upper wall. The granular phase is compressed between a fixed
wall at the bottom, and a dynamic top wall, which exerts a normal
stress (σ0) downwards. The material is sheared by moving the
topmost particles parallel to the x-axis.

Creyts and Schoof, 2009; Kyrke-Smith et al., 2014). In coarse-grained tills it is
likely that the subglacial till diffusivity exceeds the hydraulic diffusivity at the ice
bed interface. The lateral boundaries are periodic (wrap-around). If a particle
moves outside the grid on the right side it immediately reappears on the left side.
Likewise, particle pairs can be in mechanical contact although placed on opposite
sides of the grid at the periodic boundaries.

The particle size distribution is narrow compared to that of subglacial tills,
which often display a fractal size distribution (e.g. Hooke and Iverson, 1995). Frac-
tal size distributions minimize internal stress heterogeneities (Hooke and Iverson,
1995; Iverson et al., 1996), but, in the absence of grain crushing, an assemblage
with a wide particle size distribution dilates from a consolidated state with the
same magnitude as assemblages with a narrow particle size distribution (Morgan,
1999) and displays the same frictional strength (Morgan, 1999; Mair et al., 2002;
Mair and Hazzard, 2007). The comparable dilation magnitude justifies the com-
putationally efficient narrow particle size distribution used here. As previously
noted, shear zones in clay-rich materials can compact during shear due to prefer-
ential parallel alignment, which is not possible to capture with the methodology
presented here.
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5. Subglacial deformation of water saturated granular material

The simulated particle size falls in the gravel category of grain size. The large
size allows us to perform the temporal integration with larger time steps (Radjaï
and Dubois, 2011; Damsgaard et al., 2013). The frictional force between two
bodies is independent of their size (Amontons’ second law) but is proportional to
the normal force on the contact interface (Mitchell and Soga, 2005), as reflected
in the contact law in the discrete element method (Eq. 5.3). We prescribe the
normal forcing at the boundary as a normal stress, which implies that the normal
force exerted onto a particle assemblage at the boundaries scales with domain size.
For a number of total particles in a given packing configuration the ratio between
particle size and inter-particle force is constant, which causes the shear strength to
be independent of simulated particle size. This scale-independence is verified in
laboratory experiments, where the granular shear strength of non-clay materials
is known to be mainly governed by grain shape and surface roughness instead of
grain size (Schellart, 2000; Mitchell and Soga, 2005).

Experiment preparation and procedure

The particles are initially placed in a dry, tall volume, from where gravity allows
them to settle into a dense state. The particle assemblage is then consolidated by
moving the fluid-permeable top wall downwards until the desired level of consol-
idation stress is reached for an extended amount of time. The same top wall is
thereafter used to shear the material in a fluid-saturated state (Fig. 5.3).

For the shear experiments, the uppermost particles are forced to move with the
top wall at a prescribed horizontal velocity (Fig. 5.3). The particles just above the
bottom wall are prescribed to be neither moving or rotating. The micro-mechanical
properties and geometrical values used are listed in Table 5.1.

Table 5.1. Parameter values used for the shear experiments.

Parameter Symbol Value
Particle count Np 9,600
Particle radius r 0.01 m
Particle normal stiffness kn 1.16 × 109 N m−1

Particle tangential stiffness kt 1.16 × 109 N m−1

Particle friction coefficient µ 0.5
Particle density ρ 2600 kg m−3

Fluid density ρf 1000 kg m−3

Fluid dynamic viscosity µf 1.797 × 10−8 to 1.797 × 10−6 Pa s
Fluid adiabatic compressibility βf 1.426 × 10−8 Pa−1

Hydraulic permeability prefactor kc 3.5 × 10−15 to 3.5 × 10−13 m2

Normal stress σ0 20 kPa
Top wall mass mw 280 kg
Gravitational acceleration g 9.81 m s−2

Spatial domain dimensions L [0.52, 0.26, 0.55] m
Fluid grid size n [12, 6, 12]
Shear velocity v x

p,top 2.32 × 10−2 m s−1

Inertia parameter value I 1.7 × 10−4

Time step length ∆t 2.14 × 10−7 s
Simulation length ttotal 20 s
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5.3. Results

Scaling of the shear velocity

The heavy computational requirements of the discrete element method necessi-
tates upscaling of the shearing velocity in order to reach a considerable shear strain
within a manageable length of time. Temporal upscaling does not influence the me-
chanical behavior of dry granular materials, as long as the velocity is below a cer-
tain limiting velocity (GDR-MiDi, 2004; Damsgaard et al., 2013; Gu et al., 2014).
The shearing velocity used here (2.32×10−2 m s−1), although roughly three orders
of magnitude greater than the velocities observed in subglacial environments (e.g.
316 m a−1 = 10−5 m s−1), guarantees quasi-static, rate-independent deformation
in the granular phase, identical to the behavior at lower strain rates. The particle
inertia parameter, I , quantifies the influence of grain inertia in dry granular mate-
rials (GDR-MiDi, 2004). Values of I below 10−3 correspond to pseudo-static and
rate-independent shear deformation in dry granular materials. I has a value of
1.7× 10−4 in the shear experiments of this present study.

The fluid phase needs separate treatment in order to correctly resolve slow
shear behavior at faster shearing velocities. This behavior is achieved by linearly
scaling the fluid dynamic viscosity with the relationship between actual shearing
velocity and the reference glacial sliding velocity. By decreasing the viscosity the
fluid is allowed to more quickly adjust to external and internal forcings. The ve-
locity scaling adjusts the time-dependent parameters of hydraulic conductivity and
diffusivity correctly. The intrinsic permeability k is time-independent, and the val-
ues produced here are directly comparable with real geological materials. The
fluid viscosity is scaled to a lower value of 1.797 × 10−6 Pa s, consistent with the
scaling factor used for the shearing velocity. We test the influence of shearing rate
by varying this parameter.

5.3 Results

First we investigate the strain-rate dependence of the sediment strength and di-
lation by shearing a relatively impermeable sediment (kc = 3.5 × 10−15 m2) at
different shear velocities. The shear velocity directly influences the magnitude of
the peak shear strength, dilation and internal fluid pressure (Fig. 5.4 and 5.5). At
relatively large shearing velocities the dilation rate exceeds the pore-pressure dif-
fusion rate, and the internal pressure reduction strengthens the material. At lower
shearing velocities the material is substantially weaker due to a decreased dilation
rate, where the pore pressure diffusion has more time to adjust to the volumetric
changes in the shear zone.

At the reference shearing velocity the peak shear frictional strength is 0.71,
which corresponds to 14 kPa at an effective stress of 20 kPa (Fig. 5.4, top left,
Fig. 5.6). When sheared a hundred times slower, the peak shear friction has de-
creased to 0.62, corresponding to 12 kPa (Fig. 5.4, top right, Fig. 5.6). The peak
values are measured during the transition from the dense and consolidated pre-
failure state to the critical state where a shear zone is fully established. This tran-
sition is characterized by rapid dilation due to porosity increases in the shear zone
(Fig. 5.4, middle). During fast shearing velocities the volumetric change outpaces
the diffusion of fluid pressure, causing the internal pore-water pressure in the shear
zone to decline (Fig. 5.4, bottom and Fig. 5.5). Dilatant hardening causes the peak
shear strength to increase at large shear velocities (Fig. 5.6), while the strength re-
duces to the pure granular strength for lower velocities.
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Figure 5.4. Shear experiments with different shearing rates.
(Top) unsmoothed and smoothed shear friction values, (center)
dilation in number of grain diameters and (bottom) minimum,
mean, and maximum fluid pressures. The permeability prefactor
value is kc = 3.5× 10−15 m2. The shear friction values (top) are
smoothed with a moving Hanning window function to approxi-
mate the strength of larger particle assemblages. The material
peak strength increases with strain rate due to reductions of in-
ternal fluid pressure. This strengthening is taking place when the
dilation rate exceeds the dissipation rate of the fluid.
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Figure 5.5. Temporal evolution (x-axis) of horizontally averaged
fluid pressures (y-axis). At fast shear rates (top) there are large in-
ternal pressure decreases and slow recovery due to a large dilation
rate and an insufficient pressure dissipation. When the shearing
velocity is decreased (middle) and (bottom) the dissipation rate
becomes increasingly capable of keeping internal pressures close
to the hydrostatic pressure (0 kPa).
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Figure 5.6. Peak frictional strength before the critical state of the
low-permeability granular bed (kc = 3.5 × 10−15 m2) at differ-
ent shear velocities. The frictional strength is constant and rate-
independent at velocities lower than 101 m a−1 as pore-pressure
diffusion rates far exceed rates in volumetric change.

In this model framework, adjusting the hydraulic permeability of the same
coarse sediment leads to similar conditional strengthening as shearing the sedi-
ment at different rates (Fig. 5.7). Without fluids (the dry experiment), the peak
shear friction (Fig. 5.7, left) is relatively low and the shear stress is dominated
by high-frequency fluctuations. The fluid-saturated experiment with the relatively
high permeability (kc = 3.5× 10−13 m2) has similar shear strength, but the high-
frequency oscillations in shear friction are reduced by the fluid presence. The
dilation is similar to the dry experiment, but with slightly decreased magnitude.
The mean fluid pressure deviation from hydrostatic values (Fig. 5.7, bottom left)
is close to zero. The low-permeable experiment (Fig. 5.7, right) is characterized
by the largest initial peak strength, and lowest magnitude of dilation. Compared
to the other experiments, the dilation reaches its maximum values at lower shear
strain. The fluid pressure decreases almost instantaneously at first, whereafter it
equilibrates towards the hydrostatic value (0 Pa).

At constant shearing rate with different permeabilities (Fig. 5.8, top) or at vari-
able shearing rates with constant permeability (Fig. 5.8, bottom), we observe that
pore water dynamics have a significant effect on the distribution of strain. The
presence of pore water causes a more shallow deformational profile. Progressively
lowering the permeability or increasing the shear velocity decreases the deforma-
tional depth.

The effects of the fluid are visible at different depths within the deforming
material (Fig. 5.9 and 5.10). The deformation is pervasive with depth for the rel-
atively permeable experiment (Fig. 5.9 top), and the fluid pressures deviate only
slightly from the hydrostatic values (red). The relatively small pressure gradients
cause only weak fluid forces on the particles in this experiments. Contrasting these
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Figure 5.7. (Top) shear strength, (center) dilation in number
of grain diameters and (bottom) minimum, mean and maximum
fluid pressures in shear experiments with different permeability
properties.

results, deformation is in the impermeable experiment primarily governed by de-
coupling of the top wall and the particles in the bed below (Fig. 5.9 and 5.10,
bottom).

Differences in hydraulic permeability influence the dynamics of the fluid over
time, as illustrated in Fig. 5.11. The fluid pressures in the permeable material (top)
are initially predominantly negative, reflecting the increasing dilation (Fig. 5.7,
middle). In the critical state (after a shear strain value of 0.1), the fluid pressures
fluctuate around the hydrostatic value (0 Pa).
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strain profiles) for the dry and fluid saturated shear experiments.
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Figure 5.9. Particle displacement and fluid forces for different
permeabilities at a shear strain of 0.25. (Left) particles colored by
their original position, (center) particles colored by their displace-
ment along the x-axis, (right) vertical (z) forces from the fluid
onto the particles. In the permeable material and/or at low shear-
ing velocities (top), the internal volumetric changes are accommo-
dated by porous flow. This keeps the fluid pressures close to hydro-
static values and causes deep deformation (top center). In mate-
rials which are impermeable and/or are sheared at fast rates (bot-
tom), the volumetric changes cause drastic pore-pressure reduc-
tions, effectively strengthening the material (bottom right) and
focusing deformation at the top (bottom left and center).
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Figure 5.10. Horizontally averaged fluid and particle behavior
with progressive shear strain. (left) Vertical particle displacement,
(center left) mean permeability, (center right) mean fluid pres-
sure, and (right) vertical component of the mean fluid stress, cal-
culated as f i

i/A
i , where f i

i is the fluid pressure force on particle i
from Eq. 5.12 and Ai is its surface area.
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Figure 5.11. Temporal evolution (x-axis) of horizontally averaged
fluid pressures (y-axis). The permeable material (top) is able to
quickly respond to internal volumetric changes, which are short-
lived and of small magnitude. The low-permeable material (bot-
tom) is dominated by large pressure reductions and relatively slow
relaxation.
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5. Subglacial deformation of water saturated granular material

5.4 Discussion

Strain-rate dependency

Several studies have highlighted the importance of feedbacks between the solid
and fluid phases during granular deformation (e.g. Iverson et al., 1994; Iverson
et al., 1997b; Iverson et al., 1998; Pailha et al., 2008; Iverson, 2010; Rondon
et al., 2011; Mutabaruka et al., 2014). A shear-rate dependency in a grain-fluid
mixture can only originate from the fluid phase, since dry granular materials de-
form rate-independently under pseudo-static shear deformation (GDR-MiDi, 2004;
Damsgaard et al., 2013). Rate dependency emerges, however, as soon as the flow
of viscous pore fluids starts to influence the solid phase.

Water has a relatively low viscosity, which implies that the shear stress required
to deform the fluid phase alone is extremely low. The fluid phase does however
influence the bulk rheology if diffusion of fluid pressures is limited relative to vol-
umetric forcing rates, as in a rapidly deforming but relatively impermeable porous
material. The coupled particle-fluid interactions cause the material to respond as a
low-pass filter when forced with changes in volume and porosity. The reequilibra-
tion of pressure anomalies depends on the volumetric strain rate, water viscosity
and material permeability. Any forcing that affects local porosity causes the mate-
rial to respond in part like a viscous dashpot due to internal fluid flow.

Dilatant hardening: Effects on sediment strength and deformation
depth

When deformed, granular materials often undergo volumetric changes in order to
attain the optimal packing for continuous deformation (e.g. Schofield and Wroth,
1968). Shear zones within dense granular materials (normally consolidated) typi-
cally expand (Fig. 5.7, middle) in a process known as Reynolds dilation (Reynolds,
1885; Mead, 1925). The pore-volume increase internally in the shear zone causes
a local reduction in pore-water pressure, and a deviation from the hydrostatic pres-
sure distribution. The appearance of hydraulic gradients drives fluid flow into the
shear zone. Considering the Mohr-Coulomb constitutive relation for till rheology,
the reduction of pore-water pressure reduction increases the effective stress, which
in turn strengthens the material in the shear zone (Fig. 5.12). In our results,
the particles are pushed towards the shear zone by the pressure gradient force
(Fig. 5.13). The tangential strength of inter-particle contacts is in the DEM deter-
mined by Coulomb friction (Eq. 5.3), which implies a linear correlation between
contact normal force and tangential contact strength. Heavily loaded particle con-
tacts are thus less likely to slip, and chains of particles with strong contacts cause
increased resistance to deformation (Damsgaard et al., 2013). The convergence
of particles strengthens the inter-particle contacts and increases the shear friction
until hydrostatic pressure conditions are reestablished.

The dilative strengthening requires sufficiently low hydraulic diffusivities rela-
tive to the shear zone dilation rate (e.g. Iverson et al., 1997b; Moore and Iverson,
2002; Iverson, 2010). Dilation ceases when a sediment reaches the critical state.
Owing to the granularity of the material, the vertical strain rate displays small
fluctuations around levels corresponding to the critical state value. The small volu-
metric oscillations create new fluid-pressure deviations from the hydrostatic value,
which slightly weaken or strengthen the sediment (Fig. 5.7, top, and Goren et al.
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Introduction Numerical background Navier-Stokes results Stokes flow Conclusions

Subglacial till and glacier motion
Strain hardening
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Porewater flow
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Mohr-Coulomb plastic: |· | = C + ‡0 tan „ where ‡0 = ‡i ≠ Pw

Figure 5.12. Particle-fluid interaction during deformation of a
consolidated sediment. After Iverson et al. (1998).

Figure 5.13. Micro-mechanical cause of dilatant hardening. A
consolidated sediment (top) is deformed with a vertical gradi-
ent in velocity. The grains are forced past each other in order
to accommodate the shear strain. The deformation causes dila-
tion, which increases porosity localy and decreases fluid pressure
(bottom). The established gradient in fluid pressure pulls particles
together (Eq. 5.12), which increases the load on inter-particle con-
tacts. The larger inter-particle normal stress increases the shear
strength of the contact (Eq. 5.3) resulting in a stronger sediment.
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5. Subglacial deformation of water saturated granular material

(2011)). In cases where the shear stress is close to the sediment shear strength,
the hardening may be sufficient to stabilize patches of the bed (Piotrowski, 1987).

The granular model applied here is not able to reproduce the shear-induced
compaction that clay-rich materials can display during early shear (e.g. Dewhurst
et al., 1996), but we can speculate about the rheological consequences. The com-
paction causes increased pore-water pressure in the shear zone, in cases where the
volumetric change exceeds the time scale of pore-water pressure diffusion. Some
of the compressive stress normal to the shear zone orientation is consequentially
reduced, which decreases the material strength. The reduction of strength due to
compaction is rate-dependent like the dilative hardening.

The shear zone thickness is in our experiments heavily influenced by the dila-
tant hardening where a low permeability causes extremely localized failure at the
upper moving interface (Fig. 5.8 and 5.9, left). This is consistent with the labora-
tory results by Iverson et al. (1997a), where the shear zone in the coarse-grained
Storgläciaren till in all cases was wider than the shear zone of the fine-grained Two
Rivers till. The velocity profile of the shear zone determines the material flux. A
shallower deformation depth and a lower subglacial sediment transport rate is thus
to be expected from subglacial shearing of compacted, low-permeable sediments,
relative to permeable counterparts. These results are consistent with observations
of very shallow deformation of subglacial tills with a relatively low permeability
(Engelhardt and Kamb, 1998; Piotrowski et al., 2004).

Our results demonstrate how the interplay between the solid and fluid phases
can influence the sediment strength. Pore-water pressures decrease during de-
formation, and shear strength increases until deformation ceases or the critical
state is reached. Once the local and regional hydraulic system recovers from the
pore-pressure reduction, the sediment strength is once again reduced and a new
deformation phase may be initiated (Fig. 5.14). The magnitude of strengthening
is dictated by the ability of the subglacial hydrological system to accommodate
reductions in pressure at the ice-bed interface (Fig. 5.15).

A variable shear strength of the till influences ice flow if the basal shear stress
is in the range of the strength values. Since surface slopes of ice streams are low,
driving stresses tend to be low as well. Inferred values of driving stresses at the
Northeast Greenland ice stream (Joughin et al., 2001), Whillans Ice Stream and ice
plain (Engelhardt and Kamb, 1998), and Pine Island Glacier (Thomas et al., 2004)
lie within the range of 2 to 23 kPa (Alley and Whillans, 1991; Cuffey and Paterson,
2010), and are thus potentially sensitive to the variability in till strength. If the
glacier moves with variable velocities in a stick-slip or surging manner, periods of
stagnant ice flow may consolidate and strengthen the sediment, in effect delaying
the following slip event (Iverson, 2010).

5.5 Conclusions

We numerically simulate a two-way coupled particle-fluid mixture under pseudo-
static shear deformation. The grains are simulated individually by the discrete ele-
ment method, while the fluid phase is treated as a compressible and slowly flowing
fluid adhering to Darcy’s law. The fluid influences the particles through local devi-
ations from the hydrostatic pressure distribution. Due to the extremely low viscos-
ity of water, the deformational behavior of dense granular material is governed by
inter-grain contact mechanics. The porosity of a granular packing evolves asymp-
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Figure 5.14. Conceptual model of cyclic strengthening due to
sediment and pore-water feedbacks during steady shear of a con-
solidated sediment with low permeability.

Figure 5.15. The magnitude of strengthening felt by the glacier
due to dilatant hardenining depends on the permeability and wa-
ter availability at the ice-bed interface. If the subglacial hydraulog-
ical system has a high permeability and a thick water film at the
ice-bed interface (left), the till directly beneath the glacier sole
is kept weak because the pore-water pressure in the upper-most
parts is unchanged. If the ice-bed interface on the other hand has a
low permeability and a thin water film (right), the bed strengthens
as the volumetric expansion of the till reduces pore-water pressure
at all depths and increases the strength.

57

Figure 5.14. Conceptual model of cyclic strengthening. Feed-
backs between sediment and pore-water during shear of a con-
solidated sediment with low permeability cause strengthening of
the sediment during the onset of deformation. The strengthen-
ing may cause interfacial decoupling between the glacier and its
bed until pore-water pressures in the sediment have recovered.
The recoupling causes a new event of deep deformation which yet
again causes sediment strengthening.

Figure 5.15. The magnitude of strengthening felt by the glacier
due to dilatant hardenining depends on the permeability and wa-
ter availability at the IBI. If the subglacial hydrological system has
a high permeability and a thick water film at the IBI (left), the till
directly beneath the glacier sole is kept weak because the pore-
water pressure is unchanged in the upper-most parts. If the IBI
on the other hand has a low permeability and a thin water film
(right), the bed strengthens as the volumetric expansion of the till
reduces pore-water pressure at all depths.
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totically towards a constant value when deformed. Changes in porosity cause
deviations from the hydrostatic pressure if the rate of porosity change exceeds
the rate of pressure diffusion. The rate of pressure diffusion is governed by the
fluid viscosity, the local porosity and the hydraulic permeability. Low fluid pres-
sures developing due to sediment dilation cause a volumetric contraction in the
granular phase which increases the stress between particles, in turn increasing the
strength of individual grain contacts. The magnitude of the strengthening effect
is rate-dependent, and increases with shear velocity and decreases with increasing
hydraulic permeability. The resulting rheology is perfect-plastic for permeable or
slowly deforming tills while rate-dependent dilative strengthening contributes to
the material strength during early stages of fast deformation of impermeable and
dilating tills. If the till is clay-rich, compaction due to microfabric development in
the shear zone is expected to weaken the sediment, causing a rate-weakening with
increased shear rate until the excess pressures are reduced by hydraulic diffusion.

We furthermore show that for a fast shear velocity (732 m a−1) permeable
sediments are only weakly influenced by the fluid phase, resulting in little shear
strengthening and a deep decimeter-scale deformation dictated by the normal
stress and grain sizes. Impermeable and consolidated sediments display slight di-
latant strengthening at high shear velocity. The strengthening causes deformation
to focus at the ice-bed interface where pore-water pressures are higher and rela-
tively constant. The depth of deformation is then on the centimeter-to-millimeter
scale. Actively deforming patches in the subglacial mosaic of deforming and stable
spots act as sinks for meltwater and can cause substantial thinning of a water-film
at the ice-bed interface. If the subglacial shearing movement halts, the sediment
gradually weakens as the fluid pressure readjusts to the hydrostatic value. The
temporal changes in sediment strength may explain observed variability in glacier
movement.
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6. Creep, stick and slip in subglacial granular beds

Abstract

Glaciers often move by deformation of underlying melt-water saturated
deformable sediments whose mechanical behavior remains poorly understood.
Here we use new computational experiments on water-saturated granular ma-
terials to show that a granular bed can change mechanical behavior, when for
example variations in melt-water pressure disturb the dynamic balance of the
grain packing. We find that the bed switches between modes of stick, rate-
dependent creep, and rate-independent failure, depending on changes in the
external forcing. Our results show that these transitions in mechanical mode
can explain velocity variations in granular materials, and uncovering their un-
derlying fundamental physics improves our understanding glacier sensitivity
to climate change.

One Sentence Summary:
Failure of grain contacts due to variations in pore-water pressure explains slow
creeping movement of granular materials under glaciers.

6.1 Main text

Glaciers and ice sheets flow over a substratum largely by three mechanisms (Cuf-
fey and Paterson, 2010): 1) internal deformation of the ice by viscous creep, 2)
sliding at the ice-bed interface, or 3) deformation of unconsolidated subglacial sed-
iments (Iverson et al., 1995; Hooke et al., 1997; Kavanaugh and Clarke, 2006).
Fast flowing glaciers and ice streams are typically at the pressure melting point
due to the weight of the overlying ice, frictional heating during movement, and
heat from the underlying bedrock crust. Such thermal conditions allow liquid wa-
ter in the subglacial environment. Hence, sedimentary subglacial beds often host
melt-water saturated and actively deforming granular materials (till), consisting
of either reworked older sedimentary deposits or mobilized products from erosion
(Evans et al., 2006; Cuffey and Paterson, 2010). The till may be weaker than the
glacier ice itself, causing till deformation in many cases to constitute a significant
fraction of the total movement measured at the glacier surface (Blake et al., 1994;
Hooke et al., 1997; Engelhardt and Kamb, 1998; Cuffey and Paterson, 2010), and
fast ice flow is hence often collocated with sedimentary beds (Anandakrishnan et
al., 1998).

The mechanical behavior of subglacial till is thus of primary importance to
understand ice flow. However, the mechanical controls on till strength and de-
formation style are poorly known. The subglacial environment is difficult to ac-
cess and experimentally analyze, and the physics of subglacial till deformation
has consequently been a topic of long-lasting and intense discussion (Alley et al.,
1986; Boulton, 1986; Boulton and Hindmarsh, 1987; Kamb, 1991; Iverson et al.,
1995; Hooke et al., 1997; Hindmarsh, 1997; Iverson et al., 1998; Tulaczyk et al.,
2000a; Fowler, 2003; Clarke, 2005; Kavanaugh and Clarke, 2006; Rathbun et al.,
2008; Iverson and Zoet, 2015). The constitutive relations proposed for till range
from shear-velocity strengthening (Boulton and Hindmarsh, 1987; Alley et al.,
1987b), velocity weakening (Iverson et al., 1994; Iverson et al., 1999; Thomason
and Iverson, 2008), to a strength essentially independent of shear velocity (Kamb,
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1991; Iverson et al., 1998; Tulaczyk et al., 2000a). Mechanics based on velocity-
strengthening actively dampens variations in ice-flow velocity by increasing fric-
tional resistance when deformation accelerates and vice versa. Models based on
velocity-weakening or velocity-independent till strength may, on the other hand,
explain rapid flow oscillations and unstable feedbacks in glacier flow, which may
ultimately lead to ice sheet collapse (Alley, 1990; Kamb, 1991; Zwally et al., 2002;
De Angelis and Skvarca, 2003; Rignot et al., 2004; Thomason and Iverson, 2008;
Zoet and Iverson, 2015). Models based on velocity-strengthening (or viscous re-
lations) are practical for theoretical studies of glacier evolution, since they offer a
one-to-one relationship between stress and deformation rate (Alley et al., 1987b;
Hindmarsh, 1998; Fowler, 2000). Yet, evidence from in-situ measurements and
laboratory experiments strongly supports the notion of a plastically deforming till
with little correlation between glacier sliding velocity and subglacial till strength.
The strength seems instead to be controlled by effective pressure, the fraction of
ice overburden that is not carried by subglacial water pressure (Kamb, 1991; Fis-
cher and Clarke, 1997; Hooke et al., 1997; Iverson et al., 1998; Tulaczyk et al.,
2000a; Damsgaard et al., 2013).

The influence of effective pressure is supported by several studies of posi-
tive correlation between surface melt production, subglacial water pressure, and
glacier flow (Fischer and Clarke, 1997; Hooke et al., 1997; Zwally et al., 2002;
Bartholomaus et al., 2008; Bartholomew et al., 2010). Glaciers can accelerate in
this case because the melt-water produced at the surface is routed to the glacier
bed, where water pressure increases and lowers the effective pressure. Likewise,
many West Antarctic ice streams that drain ice to the ocean flow at highly variable
speeds, because tidal movements in the floating part of the glacier modulate the
upstream distribution of pore-water pressure and stress from the ice (Bindschadler
et al., 2003; Winberry et al., 2011; Walker et al., 2013; Thompson et al., 2014).
Although surface-melting glaciers and Antarctic tidal ice streams are dissimilar in
many ways, the basic reason for their variable velocity may be the same: reduction
of effective pressure weakens the frictional strength of the glacier bed.

In order to study the mechanical response of a granular bed to transient stress
perturbations, we designed computational experiments where the force-balance of
a fluid-saturated granular material is disturbed by variations in effective pressure.
This approach is new for a subglacial setting, but highly rewarding compared to
standard continuum methods because it obviates a priori assumptions regarding
the macroscopic rate-dependency of the material strength. Generally speaking,
the mechanical behavior of a granular material results from the properties of the
individual grains and their collective self-organizing arrangement. Because of the
way stress is transmitted along force-bearing chains of grains (Fig. 6.1B), gran-
ular materials have an inherent ability to change mechanical phase, for example
between solid and fluidized states, and the transitions are known to drastically
influence the load-bearing capacity (Jaeger and Nagel, 1992; GDR-MiDi, 2004).
We used a coupled numerical method where the dynamics of the solid is resolved
per grain (Cundall and Strack, 1979; Damsgaard et al., 2013), while pore-water
flow is controlled by Darcian diffusion (Goren et al., 2011). The computational
experiment involves a small three-dimensional sample (0.52 x 0.26 x 0.55 m) of
sediment represented by 9,600 grains. The comparability between experiment
and true subglacial setting thus depends on the scale-independency of granular
geotechnical properties (Fowler, 2003; Tulaczyk, 2006; Feng et al., 2009; Iverson
and Zoet, 2015), and the fundamental consistency of the Mohr-Coulomb failure
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Figure 6.1. A, Schematic representation of two flow mechanisms
caused by granular deformation in the glacier bed. The granu-
lar till-bed slowly creeps due to variations in pore-water pressure
(left) or slips rapidly due to yield failure. Figure is not to scale.
B, During creep variations in pore-water pressure (Pw) modify the
direction and magnitude of the maximum compressive strength
(σcmax), leading to small-scale reorganization and deformation in
the granular force network.

envelope across materials and grain sizes (Damsgaard et al., 2013).
The external forcing, i.e. shear stress and pore-water variation, was calibrated

to mimic realistic subglacial conditions where water pressure may vary at consider-
ably shorter time-scales than shear stress. The shear stress was thus held constant
at 10 kPa, while pore-water pressure at the top of the bed was forced to swing at an
amplitude of 70 kPa. The pore-pressure modulation caused the effective normal
stress to vary around a mean value of 80 kPa (Fig. 6.2A). All parts of the granular
assemblage were free to move and accelerate at any rate dictated by the net force
on each grain.

In our experiments, the granular bed showed highly non-linear velocity varia-
tions in response to the fluctuating effective pressure. Periods without any motion
– stick events, when large and static force-chains stabilized the gain packing, were
possible during times of maximum effective pressure and slow variation in pore-
water pressure. In contrast, periods of complete slip, with rapid deformation of
a thin boundary layer of grains, occurred when effective pressure was lowered
enough to push the macroscopic yield stress below the externally imposed shear
stress. Moreover, a key finding of our experiments was that the granular material
showed significant creep in the periods between the stick-slip phases (Fig. 6.2B).
The rate of creep decayed rapidly under constant-stress forcing, but continuous
variations in effective pressure caused the orientation and magnitude of the max-
imum compressive stress to change correspondingly, which, in turn, required the
grains to keep reorganizing in order to obtain a packing capable of supporting
the new orientation of the principal stress (Fig. 6.1B). The grains thus responded
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Figure 6.2. Granular dynamics in computational experiments
forced by cyclic water pressure. A, Cyclic modulation in pore-
water pressure (∆pf) at the upper boundary alters the effective
normal stress (N) in anti-phase by relieving the bed of a fraction
of the ice overburden stress. The variation in normal stress causes
regular fluctuations in the ratio between applied shear stress (τ)
and effective normal stress. The stability of the granular assem-
blage is determined by this ratio (B), and it responds by 1) stick
(gray vertical bars), 2) slow creep for low τ/N ratios, or 3) slip
during high τ/N ratios. The irregular velocity pattern results in
a step-wise displacement (C), where mean porosities are constant
during creep and elevated during fast slip. The number of heav-
ily loaded grain pairs increases as the effective normal stress de-
creases, while the mean number of contacts per particle decreases
(D). The internal porosity is increased in areas of active deforma-
tion (E) and deepens over the course of several cycles.
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to changes in stress forcing by inter-grain contact reorientation, grain rolling, or
inter-grain sliding, when the contacts were unfavorably oriented relative to the
principal stress. The contact reorganization sustained large creep velocities and
a high level of porosity in the sediment, and the material did not consolidate to
pre-failure packing under maximum effective pressure (Fig. 6.2C,E).

The finding of pre-failure creep in idealized granular materials contrasts the
perfect plastic material rheology, where no deformation occurs at stress levels
smaller than the yield strength. The combination of stick, creep and slip resulted
in a stepped displacement history (Fig. 6.2C). Although creep rates in geotechni-
cal materials are commonly assumed to decay with time (Kirkby, 1967; Terzaghi
et al., 1996; Mitchell and Soga, 2005), our experiments suggest that continuous
melt-water perturbations cause sustained internal grain rearrangement (Fig. 6.3),
analogous to how hillslopes beneath the angle of repose experience downslope
sediment movement due to moisture variations (Carson and Kirkby, 1972; Roer-
ing et al., 2001). The flow of slow-moving landslides is sensitive to transient stress
perturbations such as variations in pore-water pressure by discrete precipitation
events (Iverson and Major, 1987; Malet et al., 2002), or diurnal variations in pres-
sure (Schulz et al., 2009).
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Figure 6.3. Granular dynamics in response to decreasing effec-
tive pressure. A, effective normal stress and grain movement.
Grain rearrangement accelerates non-linearly as effective pressure
drops. B, internal distribution of stress in different states of the
granular material. The granular contact stress is mainly in the
direction of the applied principal stress.

We have compared our model results with observations from a mountain glacier,
an ice stream, and a landslide. The landslide does not involve glacier ice, but we
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Figure 6.4. Creep and slip due to granular deformation induced
by pore-pressure variation in two glacial systems (A, B) and an ac-
tive landslide (C). All systems display slow but finite displacement
during periods of low but variable water pressure, corresponding
to the creep observed in our numerical simulations (Fig. 6.2B).
Trapridge Glacier data from Fischer and Clarke (1997), Super-
Sauze landslide data from Malet et al. (2002).
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6. Creep, stick and slip in subglacial granular beds

propose that aspects of landslide motion is caused by the same physical mecha-
nisms as creep in the subglacial bed. Detailed information of the flow and hy-
draulic state is available for all three cases (Fig. 6.4). At Whillans Ice Plain, West
Antarctica, tidewater variations induce flow oscillation (Fig. 6.4A, Bindschadler
et al. (2003) and Winberry et al. (2011)). Similar displacement is observed at
Trapridge Glacier, Yukon Territory, Canada (Fig. 6.4B, (Fischer and Clarke, 1997)),
where surface melt drains through crevasses to the granular bed. The flow of the
Super-Sauze landslide, Alpes-de-Haute-Provence, France (Fig. 6.4C, Malet et al.
(2002)) is strongly linked to discrete precipitation events, which alter the inter-
nal water level. In all three settings non-linear granular strength causes flow to
switch between fast slip and slow “stick”. The slip phases correspond to plastic
failure of the granular bed when hydraulic pressure exceeds a threshold value.
Slow flow between slip events is likely caused by elastic loading and the granu-
lar creep mechanism presented here. While short-scale variations in pore-water
pressure drive the granular creep, long-term changes in mean hydraulic pressure
cause changes to average creep rates and influence the duration of the temporal
window for slip (Beem et al., 2014). The extreme sensitivity of granular flows to
the physical conditions highlights the importance of understanding the sediment
mechanics during both slip and creep.
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Figure 6.5. Relationship between applied shear stress, effec-
tive normal stress and shear strain rate. Below the plastic yield
strength (dashed line) the granular material creeps with a non-
linear viscous rheology, see fitted relationship in plot. Stressed
above the plastic yield limit the material fails to increase its
strength and the upper boundary accelerates, only limited by the
inertia of its components.

Supplementary Methods

The grain and water mixture is simulated using two separate but coupled numer-
ical models. The grains in the granular phase are simulated individually, and are
interacting with each other and the pore-water fluid, as well as with the model
boundaries. The fluid phase is treated as a visco-elastic continuum and flows ac-
cording to Darcy’s law.

The experimental setup is a cuboidal volume where the lateral boundaries are
periodic, in effect giving a one-dimensional or horizontally pseudo-infinite geom-
etry (Fig. 6.6). The granular assemblage is originally pre-consolidated and in a
pre-failure state. The uppermost particles are moving uniformly and are imposing
a modulating value of normal stress downwards and a constant shear stress along
the positive direction of the x-axis. The fluid pressure is at the top boundary mod-
ulated according to the change in normal stress. The horizontal shear velocity at
the top boundary is monitored as the stresses and fluid pressures evolve.

The novel computational approach allows for a precise movement of shear ve-
locities far exceeding the resolution of sensors in laboratory devices. Additionally,
the use of periodic lateral boundaries removes the effects of wall friction in most
laboratory shear devices and strain thinning in direct-shear boxes. The numeri-
cal model produces true granular mechanics since no assumptions of macroscopic
constitutive behavior is included. The purpose-built open-source modeling frame-
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Figure 6.6. Experimental setup and deformation in the shear ex-
periments.

work allows for experiment reproducibility and all model input files are available
online.

The granular model imposes strict requirements to the time step length, how-
ever. In order to simulate a significant number of particles of realistic size with
a quartz-like stiffness, we have implemented the granular and fluid algorithms in
CUDA C (NVIDIA, 2013b) in order to accelerate the computations using NVIDIA
GPUs1. The massive computational requirements force us to use mono-sized par-
ticles, since wider grain-size distributions increase contact search distances.

The stress variations caused larger creep rates at lower confining stress, because
the average grain contact frictional strength was lower. Our experiments showed
a distinctive and simple relationship between the applied shear stress, effective
pressure, and creep rate (Fig. 6.6), depending on the amplitude and frequency
of the pressure variation, resulting in stress exponent values between 6 and 11.
The creep rates of our transient experiments are likely smaller than those of clay-
rich materials in the same setting, since the presence of clay minerals is known to
accelerate creep under steady forcings (Mitchell and Soga, 2005). Pore pressure
variations are damped over distance in materials with low permeability, which
leads to largest creep rates near subglacial channels.

Granular model

The grains are handled individually using the discrete element method(Cundall
and Strack, 1979; Luding, 2008; Radjaï and Dubois, 2011; Damsgaard et al.,
2013) (DEM). The grain shapes are idealized as spheres interacting using a linear
elastic-frictional contact rheology. The surface forces resulting from the interaction
between a pair of grains with indexes i and j are found as:

f n
i, j = −knδn

i, j (6.1)

f t
i, j = −max{kt||δt

i, j ||,µ|| f n
i, j ||} δt

i, j

||δt
i, j || (6.2)

1https://github.com/anders-dc/sphere
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k is the elastic stiffness of the grain material. The magnitude of the tangential force
is limited by the Coulomb criterion, where the coefficient µ describes the frictional
limit. δn is the inter-grain overlap vector and δt is the cumulative movement on
the contact plane. The overlap vector is found as (Luding, 2008; Hinrichsen and
Wolf, 2004):

δn
i, j = x j − x i − (r i + r j) (6.3)

x is the position of the grain center and r is the grain radius. The uncorrected total
displacement on the contact plane (δi, j

t* ) is found by integrating the displacements
from each time step for the duration of the contact tc (Luding, 2008; Hinrichsen
and Wolf, 2004):

δ
i, j
t* =

∫

tc

�

ẋ i − ẋ j +

�

r i +
||δn

i, j ||
2

�

n i, j × Ω̇i +

�

r j +
||δn

i, j ||
2

�

n i, j × Ω̇ j

�

(6.4)

ẋ is the linear grain velocity, and Ω̇ is the angular grain velocity. n is the contact
plane normal vector. The vector of displacement on the tangential plane (δt) is
corrected for contact rotation (Hinrichsen and Wolf, 2004):

δi, j
t = δ

i, j
t* − n i, j

�

n i, j ·δi, j
t*

�

(6.5)

If the frictional limit on the contact is exceeded (ktδt > µ f n, Eq. 6.2), the dis-
placement vector on the contact plane (δt) is adjusted to a length consistent with
Coulomb’s condition (Luding, 2008; Radjaï and Dubois, 2011):

δi, j
t ≡

µ|| f i, j
n ||

kt

δi, j
t

||δi, j
t ||

(6.6)

The grains are forced by the pore water through fluid-pressure gradients. Grains
are attracted to volumes of low fluid pressures and repelled from high pressures:

f f = −Vg∇pf −ρfVgg (6.7)

x

yz
x i

x j

v i

v j

ωi

ω j

f i, j
n

f i, j
n

δi, j
n

δi, j
t

n i, j

Figure 6.7. Two-dimensional schematic of an inter-grain contact.
The size of the grain overlap on the right is exaggerated. The
grain contact forces ( f n and f t) are surface forces while the grav-
itational pull ( f g) and fluid forces ( f f) are body forces.
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Vg is the grain volume, ρf is the fluid density and g is the gravitational acceleration
vector. The latter term is the uplift caused by buoyancy. Other known interaction
forces between fluids and submerged grains include drag force, lift forces caused
by fluid velocity gradients (Saffman force), torques due to grain rotation (Magnus
force), and interaction forces due to grain acceleration (virtual mass force) (Zhou
et al., 2010). These forces are negligible in our experiments of low fluid velocities,
and are therefore not included.

Once all surface and body force components for all grains are found, they are
summed to give the total linear force and torque. For a grain i which has a set of
contacts (N) the resulting force (F) and torque (T) is:

F i = f i
g +

∑

j∈N

�

f i, j
t + f i, j

n

�

+ f i
f (6.8)

T i =
∑

j∈N

�

−
�

r i +
||δi, j

n ||
2

�

n i, j × f i, j
t

�

(6.9)

f g is the gravitational force, r is the grain radius and n is the contact normal vector.
Finally the new linear accelerations (a), velocities (v), and positions (x ) and an-
gular accelerations (α), velocities (ω) and positions (Ω) for each grain are found
by explicitly integrating Newton’s second law (F = mẍ ) in time. This is done with
higher-order Taylor expansions which ensure a precise solution (Kruggel-Emden
et al., 2008):

ẍ i
t =

F i
t

mi
(6.10)

ẋ i
t+∆t = ẋ i

t + ẍ i
t∆t +

1
2

ẍ i
t − ẍ i

t−∆t

∆t
∆t2 (6.11)

x i
t+∆t = x i

t + ẋ i
t∆t +

1
2

ẍ i
t∆t2 +

1
6

ẍ i
t − ẍ i

t−∆t

∆t
∆t3 (6.12)

Ω̈i
t =

T i
t

mi
(6.13)

Ω̇i
t+∆t = Ω̇

i
t + Ω̈

i
t∆t +

1
2

Ω̈i
t − Ω̈i

t−∆t

∆t
∆t2 (6.14)

Ωi
t+∆t = Ω

i
t + Ω̇

i
t∆t +

1
2
Ω̈i

t∆t2 +
1
6

Ω̈i
t − Ω̈i

t−∆t

∆t
∆t3 (6.15)

The granular model imposes strict requirements to the time step length. The
time step length is selected in order to resolve seismic propagation of elastic waves
through the smallest grains in the granular phase (Radjaï and Dubois, 2011):

∆t =
ε

r

max(kn,kt)
min(m)

(6.16)

ε is a safety factor, here we use a value of 0.07. The constant elasticity in the inter-
grain contact model allow us to use a constant time step length. The time step
for the presented experiments has a value in the order of 10−7 s. Computational
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requirements increase with the number of particles, their stiffness, and decreases
with grain mass and, in turn, grain size. Additionally, the computationally inten-
sive inter-grain contact search favors narrow grain-size distributions in terms of
computational time.

Pore-water model

The pore water is treated as a compressible Newtonian fluid without inertia (Goren
et al., 2010; Goren et al., 2011). The temporal evolution of pore-fluid pressure
(∂ pf/∂ t) is governed by spatial diffusion of pore-fluid pressure (pf), which takes
place according to Darcy’s law, and by being forced through local changes in poros-
ity (φ) through time (∂ φ/∂ t):

∂ pf

∂ t
=

1
φβfµf

�

k∇2pf +∇pf · ∇k
�

︸ ︷︷ ︸

Spatial diffusion

Grain forcing
︷ ︸︸ ︷

− 1
βfφ(1−φ)

�

∂ φ

∂ t
+ v̄ · ∇φ

�

(6.17)

The fluid rheology is determined by the adiabatic compressibility (βf) and dynamic
viscosity (µf). The granular forcing term corrects for spatial diffusion of porosity.
v̄ is the average local grain velocity. Note that the above equation describes the
pressure deviation from the hydrostatic value. The local intrinsic permeability
(k) is prescribed by a Kozeny-Carman type relationship which scales permeability
with porosity (Hazen, 1911; Kozeny, 1927; Carman, 1937; Harleman et al., 1963;
McNamara et al., 2000; Goren et al., 2011):

k = kc
φ3

(1−φ)2 (6.18)

The local porosity is determined at the fluid cell center. We use a homogeneous
cubic spatial discretization with cell side length∆x . For a cell with a set of N grains
in its vicinity, it is determined by inverse-distance weighing the grains (Fig. 6.8)
(McNamara et al., 2000; Goren et al., 2011): The weight function s is 1 at the cell
center and linearly decreases to 0 at a distance of ∆x (Fig. 6.8):

φ(x f) = 1−
∑

i∈N s(x i − x f)V i
g

∆x3
(6.19)

s(x i − x f) =

¨

Π3
d=1

h

1− |x i
d−x f,d |
∆x

i

if |x i
1 − x f,1|, |x i

2 − x f,2|, |x i
3 − x f,3|<∆x

0 otherwise
(6.20)

∆x3 is the fluid cell volume, and x f is the cell center position. The average grain
velocity at the cell center is found using the same weighting function described
above (eq. 6.20). Additionally, large grains contribute to the velocity with a greater
magnitude:

v̄(x f) =

∑

i∈N s(x i − x f)V i
g v i

∑

i∈N s(x i − x f)
(6.21)
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Figure 6.8. Left: A cell in the fluid grid. The node for pressure
(pf), the gradient of fluid pressure (∇pf), porosity (φ), permeabil-
ity (k), and average grain velocity (v̄) is located at the cell center.
Right: The weighing function (eq. 6.20) at various distances.

The temporal gradient in porosity is approximated with a central-difference
scheme, where the future porosity is found by predicting grain positions at t+∆t.

∂ φ

∂ t
≈ φt+∆t −φt−∆t

2∆t
(6.22)

The fluid pressures (eq. 6.17) are integrated using the Crank-Nicolson method
of mixed explicit and implicit temporal integration (Patankar, 1980; Ferziger and
Perić, 2002; Press et al., 2007). The implicit solution is found with the iterative
Jacobi relaxation method (Ferziger and Perić, 2002; Press et al., 2007). The solu-
tion is unconditionally stable and second-order accurate in time and space. We use
the same time step length that is used for the granular computations (eq. 6.16) in
order to fully resolve the fluid-grain interaction.

Simulation Parameter Values

The applied geometric and physical parameter values are listed in supplementary
table (tab. 6.1). Noteworthy parameter choices are elaborated in the following.

Boundary conditions

The lower boundary is impermeable, and a fixed fluid pressure is prescribed at the
top boundary. The grains at the lower boundary are fixed in space while the upper
grains apply a constant shear stress. The upper grains are loaded downwards by a
wall which exerts a prescribed normal stress. The wall and upper grains are free to
move up and down as long as the normal stress condition is satisfied, allowing for
granular volumetric changes. The lateral boundaries are for both the grains and
fluid periodic (wrap-around). If a grain moves outside the grid it reappears at the
opposite boundary. Likewise, grains can be in mechanical contact although placed
on opposite sides of the grid at the periodic boundaries.
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Table 6.1. Parameters used for the computational experiments.

Parameter Symbol Value

Particle count Np 9600
Particle radius r 0.01 m
Particle normal stiffness kn 1.16× 109 N m−1

Particle tangential stiffness kt 1.16× 109 N m−1

Particle friction coefficient µ 0.5
Particle density ρ 2600 kg m−3

Fluid density ρf 1000 kg m−3

Fluid dynamic viscosity µf 1.040× 10−6 Pa s
Fluid adiabatic compressibility βf 1.426× 10−8 Pa−1

Hydraulic permeability prefactor kc 3.5× 10−13 m3

Mean prescribed normal stress N̄ 80 kPa
Normal stress modulation amplitude AN 70 kPa
Normal stress modulation frequency fN 0.2 Hz
Prescribed shear stress τ 10 kPa
Top wall mass mw 280 kg
Gravitational acceleration g [0, 0, −9.81] m s−2

Spatial domain dimensions L [0.52, 0.26, 0.55] m
Fluid grid size n [12, 6, 12]
Time step length ∆t 2.14× 10−7 s
Simulation length (scaled time) tend 35 s

Scaling of model time: 1. Granular model

Granular materials have the intrinsic ability to change phase (e.g. Jaeger et al.,
1996; Herrmann, 2002). Depending on the average kinetic energy and the pack-
ing density (or porosity) of the grains, they can behave solid-like, fluid-like or
gaseous. The material rheology undergoes drastic changes along the phase thresh-
olds, where the overall strength, rate dependence, and packing density changes
(e.g. GDR-MiDi, 2004; Krimer et al., 2012).

Under slow shear velocities and a confining normal stress, the rheology of dry
and dense granular materials is generally strain-rate independent. The mechanical
behavior of granular materials is a consequence of the inter-grain contact rheology
and the self-organizing complexity of the arrangement of grains. If the granular
material deforms under higher shearing velocities, grain inertia becomes important
and deformation becomes rate dependent (Bagnold flow) (Zhang and Campbell,
1992; Aharonov and Sparks, 1999; Aharonov and Sparks, 2002; Campbell, 2006;
Krimer et al., 2012). GDR-MiDi (2004) is a review of experimental and numerical
results of the solid-fluid transition, where a dimensionless inertia parameter I in
confined two-dimensional planar shear experiments is constituted of:

I = γ̇r̄
s

ρ

N
(6.23)

γ̇ is the shear strain rate, r̄ is the mean grain radius, ρ is the material density, and
N is the magnitude of the normal stress. Experiments show that the dry granular
materials deform in a pseudo-static and rate-independent manner when I < 10−3

(GDR-MiDi, 2004; Krimer et al., 2012).
As the average kinetic energy of the grains increases, the average duration of

inter-grain contacts decreases. In the dense state under constant stress forcing,
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grains spend the majority of time in a force-balanced configuration in contact with
each other or other rigid objects. The other end-member state, known from sand
storms and abrasive blasting, is the gaseous domain where inter-grain contacts are
few and short-lived. The fluid state lies between the end-member gas and solid
states, where packing density still is relatively large but grain inertia significantly
influences the dynamics and duration of grain contacts.

The inertia equation above (Eq. 6.23) implies that the ratio between grain ki-
netic energy and packing density controls the transition from the pseudo-static
state, where grains are close to force equilibrium, to fluid behavior, where grain
inertia significantly influences contact duration. The average kinetic energy or in-
ertia of the actively deforming parts can be altered by varying the applied shear
velocity or the grain mass. The confining stress, N , on the other hand condenses
the granular assemblage, where the contact network loading at high values over-
powers relative grain movement due to inertia.

Grain contact model

The grains in our numerical model are interacting using a linear elastic-frictional
contact rheology, commonly used in discrete element models (e.g. Cundall and
Strack, 1979; Aharonov and Sparks, 1999; Aharonov and Sparks, 2002; Goren
et al., 2011; Damsgaard et al., 2013). We have chosen not to include viscous
dashpots in the inter-grain contact model. The damping effect of quartz viscosity
is negligible at the considered temperatures (Gleason and Tullis, 1995) and is often
only introduced to dampen numerical oscillations. A loaded contact (Fig. 6.9) has
in our formulation no rate-dependent viscous components, which act to strengthen
or weaken the contact over time. This implies no relative movement of a pair of
grains at force balance under steady conditions.Damsgaard and others: DEM modeling of subglacial sediment deformation 3
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ẋi

Fig. 1: Geometry and kinematic values of particles.

entities with constant mass. For a particle i with nc contacts,

the sum of translational- and rotational forces is expressed in

two equations:

miẍi = mig +

ncX

j

⇣
f ij

n + f ij
t

⌘

| {z }
Sum of translational forces

(1)

Ii!̇i =

ncX

j

⇣
�
⇣
ri + 0.5�ij

n

⌘
nij ⇥ f ij

t

⌘

| {z }
Sum of torques

(2)

where m is the particle mass, x is the particle position vector,

g is the gravitational force vector. I is the moment of inertia,

! is the angular velocity. A dot denotes time derivation, bold

formatting means the symbol is a three-dimensional vector.

A particle is in contact with another particle or a wall

if the volumes overlap. For spherical particles, hereafter de-

noted with superscripts i and j, contact searching is a simple

operation, involving the particle center coordinates and radii:

�ij
n = ||xij || � (ri + rj) (3)

where the inter-particle vector is xij = xi � xj . Particles

overlap when �ij
n < 0, in which case the force components

normal- (fn) and tangential (f t) to the contact plane are

determined using a conventional linear-elastic contact model

(fig. 2):

f ij
n = �kn�

ij
n nij and f ij

t = �kt�
ij
t (4)

where nij = xij/||xij || is the contact normal vector, and

kn,t are the linear-elastic (hookean) spring coe�cients. The

tangential displacement along the contact plane (�ij
t ) is calcu-

lated incrementally by temporal integration of the tangential

contact velocity, and saved for the duration of the contact.

The contact velocity �̇ is found from the translational and

rotational velocities of the particles in contact (Hinrichsen

and Wolf, 2006):

�̇
ij

= (ẋi � ẋj) + ri(nij ⇥ !i) + rj(nij ⇥ !j) (5)

The contact velocity is further divided into normal- (�̇
n
) and

tangential (�̇
t
) components. The magnitude of the tangential

force is limited by the Coulomb-friction criterion of static and

dynamic friction:

||f ij
t || 

(
µs||f ij

n || if ||�̇t|| = 0

µd||f ij
n || if ||�̇t|| > 0

(6)

where the static friction coe�cient (µs) is larger or equal to

the dynamic friction coe�cient (µd). When the tangential

force begins to exceed the static friction, the contact begins

Hookean spring

Friction slider

Hookean spring

Contact check

fn

f t

kn

kt

µs,d

i

j

Fig. 2: Schematic representation of the contact model compo-

nents, normal- and tangential to the contact plane.

to slip along the contact plane. Strain-softening behaviour at

the contact can be introduced by having a lower dynamic-

than static friction coe�cient.

The upper limit of ||f t|| is the shear force acting along

a shear plane, which is optimally oriented towards the di-

rections of principal stress. In granular Coulomb materials,

the shear planes are made up of narrow bands (⇠10 grain

diameters) deforming plastically. The shear stress on the plane

is independent of either the extent or rate of the deformation

(Nedderman, 1992). While the macroscopic direction of the

shear bands are oriented in agreement with the Coulomb

criterion, the microscopic orientation of individual contact

surfaces between grains may vary.

The geotechnical particle assemblage behaviour is thus de-

fined by micro-mechanical parameters, while the collective

macroscopical behaviour is a result of self-organizing complex-

ity of the particles. As demonstrated by Belheine and others

(2009), the normal- and shear sti↵nesses (k) e↵ectively control

the macroscopical parameters Young’s modulus and Poisson’s

ratio, while the friction coe�cients (µ) control the magnitude

of dilatancy during deformation, which in turn governs the

shear strength.

DEM implementation

For our implementation a three-dimensional geometry was

chosen, since it allows for particle rotation around arbitrary

axes, resulting in particle interlocking and correct geometry of

the inter-particle void. The kinematic grain behaviour through

time is integrated in a fully explicit manner, and assumed to

be constant for the duration of small temporal increments

(�t). The algorithm consists of a series of steps:

1. Contact search (eq. 3): Inter-particle and wall-particle

contacts are identified.

2. Interaction (eqs. 4, 5, 6): For each particle contact, the

contact forces and rotational moments are calculated.

3. Integration (eqs. 1, 2): Particle kinematics are updated

using the sum of forces and torques, and time is increased

by �t.

Once the resulting forces (eq. 1 and 2) are found, the new val-

ues of acceleration are used to update positions and velocities.

For the temporal integration, a second-order half-step leapfrog

Verlet integration scheme was used (Fraige and Langston, 2004;

Kruggel-Emden and others, 2008). The length of the time

step has to be small enough to allow multiple updates of the

kinematics, while the elastic wave travels through even the

Figure 6.9. Schematic of the mechanical components of an
inter-grain contact, normal and tangential to the contact interface
plane. From Damsgaard et al. (2013).
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6.2. Supplementary Information

Computational requirements

The explicit integration scheme (eq. 6.10 to 6.15) is typical for soft-body discrete
element methods, and poses strict requirements to the time step length in order
to ensure numerical stability. The time step needs to allow sufficient resolution of
seismic propagation of elastic waves through the smallest grains in the granular
phase (Radjaï and Dubois (2011), Eq. 6.16). The mass of the smallest particle
(min(m)) scales with particle size and density. ε is a safety factor, here with a
value of 0.07. The used grain size (grain radius r = 1 cm), grain material density
(ρ = 2600 kgm−3) and contact stiffness (kn = kt = 1.16× 109 N m−1) results in
a time step of ∆t = 2.14× 10−7 s. For a simulation length of 35 s this results
in approximately 108 time steps and a computation time of 70 days. We have
chosen a large grain size but a quartz-like stiffness since this results in correct
porosity evolution during deformation. Lowering the density is also a popular way
to increase the computational time step. In our experience this can lead to volatile
behavior since particles are more easily accelerated.

Velocity scaling

Glacier sliding velocities are highly variable, ranging from zero up to ten meters per
day (Cuffey and Paterson, 2010). Ice streams generally accelerate down flow, and
the West Antarctic Whillans ice stream on a temporal average flows at velocities of
400 m a−1 to 800 m a−1 (Alley and Whillans, 1991), equivalent to 1.3× 10−5 m s−1

to 2.5× 10−5 m s−1.
The strict time step requirements for the soft-body discrete element method

(eq. 6.16) require we scale model time. The granular behavior is rate-independent
as long as I < 103 (eq. 6.23), which is satisfied in the creep phases. This value, to-
gether with the rate-independent contact model (fig. 6.9), ensures rate-independence
of shear stress and dilation in the granular phase and allows for temporal scaling.

Scaling of model time: 2. Fluid model

The model time is in the granular model upscaled as described in the previous
section. The time scaling necessitates considerations of the model time in the fluid
algorithm. There are two possibilities:

1. Use scaled model time for the granular phase and real time for the fluid
model. The grain forcing terms in the fluid equation 6.17 (∂ φ/∂ t and v̄)
are scaled by the time scaling factor used in the DEM.

2. Use scaled model time for the granular phase and scaled time for the fluid
model. This requires that the spatial diffusion term in the fluid equation 6.17
is scaled by the time scaling factor used in the DEM.

Option 1 works by forcing the fluid with much slower rates, but simulating fluid
behavior over a realistic time span. Option 2 works by enhancing the fluid ability
to compensate against forcings from the granular phase or from the boundaries.
We chose option 2 since the implementation is more straight-forward.

The spatial diffusion can be scaled by either adjusting the permeability k or the
dynamic fluid viscosity µf. The hydraulic diffusivity has the units m2 s−1 and is first
order dependent on time. We chose to adjust the fluid viscosity since it is a time-
dependent parameter (Pa s) and we could use realistic permeability values. Since
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6. Creep, stick and slip in subglacial granular beds

fluid viscosity has a first order influence on hydraulic diffusivity, we can use the
same scaling factor value used in the DEM. Water at 0 ◦C has a dynamic viscosity of
1.797× 10−3 Pa s. Consistent with the time scaling factor from the granular model,
we use a dynamic viscosity of 1.797× 10−6 Pa s. The decreased viscosity makes it
faster to adapt to internal and external changes.
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Chapter 7
Research note 1:

Discrete element modeling:
Methodology and example

This chapter is intended to expand on the fundamental design choices and im-
plementation details for the granular phase numerical model used for this thesis.
Finally, a simplified pseudo-code example demonstrates the basics of the discrete
element method.

The full source code used for the simulations in this thesis is available at
https://github.com/anders-dc/sphere.
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7. DEM modeling: Methodology and example

7.1 Introduction

DEM modeling is a Lagrangian-type numerical implementation of multibody clas-
sical mechanics. The soft-body DEM formulation was derived from molecular dy-
namics (MD) by Cundall and Strack (1979), who drew parallels between simula-
tion of geomaterials and already established algorithms used to simulate molecule
behavior.

Newton’s laws of motion are applied to individual interacting bodies. Newton’s
second law states that the acceleration of a body (ẍ ) with constant mass (m) is
proportional to the total body force (F):

F = mẍ ⇒ ẍ =
F
m

(7.1)

This proportionality implies that if the sum of forces on a grain is known, the
resultant acceleration in space can be found. The acceleration causes a change
in velocity and position, which are found through temporal integration. The same
principles can be applied to the rotational degrees of freedom, where the rotational
acceleration (Ω̈) is proportional to the sum of torques (T),

T = IΩ̈ ⇒ Ω̈=
T
I

(7.2)

here I is the moment of inertia. The kinematic behavior of solid-mass bodies is
found by determining the sum of body and surface forces acting on each entity.
Body forces contribute to the total force F , while surface forces can contribute
both to the total body force and the sum of torques T . An example body force is
the gravity force, which can be expressed as a force pulling an object from its center
of mass. Granular contact forces can cause both linear and rotational movement,
dependent on the relative movement of the grains. The total force F and total
torque T for grain i is found by:

F i =
∑

j∈nc

�

f n
i, j + f t

i, j
�

︸ ︷︷ ︸

contact forces

+ f g + . . . (7.3)

T i =
∑

j∈nc

�−r in i, j × f t
i, j
�

︸ ︷︷ ︸

contact torques

(7.4)

where f g = mg is the gravitational force, and n is the contact normal unit vector.
Soft-body DEM solve Eq. 7.1 through time, determining continuous velocity

and position evolution of the multibody system. The rigid-body (or non-smooth)
DEM formulations such as contact dynamics ignore the small time scales associated
with grain elasticity. Velocities are discontinuous through time (hence the non-
smooth name), and the solution procedure is an iterative process mapping the
network of contacts. For a comprehensive review of the solution procedure, the
reader is referred to Radjaï and Dubois (2009) and Radjaï and Dubois (2011). In
this study we chose to use the soft-body formulation, in part due to its inclusion
of elastic deformation and in part due to its inclusion of processes relevant on all
time scales (Hinrichsen and Wolf, 2004).
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7.2. Contact model components

7.2 Contact model components

Normal force

The normal force denotes the repulsive response when a set of grains are com-
pressed together. It is acting in a normal direction relative to the contact plane
between two particles. These forces may be attractive as surface tension of water
droplets in unsaturated materials pulls grains together. In saturated granular ma-
terials, normal forces short of the repulsive elastic deformation force are negligible,
however.

In the soft-body formulation, a pair of grains are in contact when their sep-
aration distance δn is less or equal to 0. The overlap of grain volumes causes a
repulsive force, which for spherical particles points from the center of the contact
point towards the grain center, making it a body force.

A simple formulation for the contact-normal force is the linear-elastic formu-
lation, where overlap causes a linear-elastic reaction force, scaled by the Hookean
contact stiffness kn (Cundall and Strack, 1979; Kruggel-Emden et al., 2007; Radjaï
and Dubois, 2009; Damsgaard et al., 2013):

f n = −knδnn (7.5)

Instead of a linear spring, the normal force is sometimes considered a non-linear
Hertz force (Hertz, 1882; Johnson, 1985; Kruggel-Emden et al., 2007; Radjaï and
Dubois, 2009):

f n = −
E
p

2r
3(1− ν2)

δn
3/2n (7.6)

E is Young’s modulus and ν is Poisson’s ratio of the grain. The contact stiffness
increases with contact loading, and the time step length ∆t must be adjusted ac-
cordingly for the explicit integration scheme to retain stability.

The examples of normal force laws above describe the contact as perfectly elas-
tic, implying that total kinetic energy is conserved after a collision. Grains tend to
clustering in granular gases because a fraction of their kinetic energy is lost during
collisions (e.g. Jaeger and Nagel, 1992; Jaeger et al., 1996). The energy dissi-
pation can be implemented in a number of ways, by e.g. adding a dash-pot with
viscosity γn to the grain contact rheology:

f n = f n
elastic + γnδ̇n (7.7)

The dash-pot viscosity causes a clear rate-dependence on the contact, however. In-
finitely long grain collisions are perfectly elastic while fast collisions contain signif-
icant damping. Consequently, the property of this parameter is difficult to justify
physically and experimentally deduce. It is however often used in DEM models
since it dampens numerical oscillations. Alternatively, the model can lose kinetic
energy through a hysteric contact model (Walton and Braun, 1986; Kruggel-Emden
et al., 2007), where the elastic stiffness coefficient is lower when the grains are
separating than when they are moving closer:

f n =

¨

−knδnn, if δ̇n ≤ 0

−cknδnn, if δ̇n > 0
(7.8)
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7. DEM modeling: Methodology and example

where c ∈]0;1[. The loss of kinetic energy through the hysteric contact model is
mainly applicable to high-energy kinetic granular assemblies with short-lived inter-
grain contacts. In dense and loaded granular assemblies it can amplify oscillatory
behavior because the force is non-smooth around δ̇n = 0.

Tangential force

The interaction between two grains can result in forces parallel to the inter-grain
contact interface, known as tangential forces. These forces can result in torques
leading to rotation. The tangential forces also increase the strength of the contact,
and are often limited by the Coulomb criterion of friction.

The tangential force origins from relative movement of the surfaces of the
grains in contact. If a non-rotating particle collides with a flat surface, the tan-
gential forces accelerate rotational movement for the duration of the collision.
The tangential forces also constitute one of the main controls on the macroscopic
shear strength of granular assemblies.

The simplest way to include tangential forces is to scale it with relative grain
surface velocity δ̇t, which for two grains i and j with rotational velocities Ω̇ can be
expressed as:

δ̇t = ẋ i − ẋ j + r in i, j × Ω̇i + r jn i, j × Ω̇ j (7.9)

The above formulation ignores the minor change in grain radius caused by elastic
grain deformation. The velocity parallel to the contact plane can scale the resultant
force through grain viscosity:

f t = γtδ̇t (7.10)

The viscous formulation of tangential strength has the implication that the shear
strength of a grain-contact is dependent on rate. A better approach is to use an
elastic tangential force, which scales force with displacement:

f t = ktδt (7.11)

The value of tangential contact velocity δ̇t used in the viscous tangential contact
law is trivial to find, as it solely depends on current grain velocities (Eq. 7.9). In
order to determine the tangential displacement δt, the velocities are integrated to
displacements over the duration of the contact tc, which involves many time steps:

δt =

∫

tc

δ̇t (7.12)

In order to achieve the tangential displacement, the DEM algorithm needs to con-
tain bookkeeping able to identify and save contacts for arbitrary lengths of time.

The tangential force is usually limited by the Coulomb criterion, stating that
the tangential force magnitude cannot exceed some fraction (µs) of the normal
force magnitude:

|| f t|| ≤ µs|| f n|| (7.13)

7.3 Contact detection

A common requirement for particle-based numerical methods with interaction
laws dependent on inter-particle spacing is the mapping of neighboring entities.
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7.4. Temporal integration

a) All-to-all b) Radial cut-off distance c) Coarse orthogonal grid

Figure 7.1. Commonly used neighbor search methods in particle-
based methods. Lines denote contact checks between particles
(circles) inside the model domain (box).

Classical DEM formulations only include repulsive interactions on physical con-
tacts between grains. The simplest method for finding inter-grain contacts is to
use an all-to-all algorithm (Fig. 7.1a) where all grains check all other grains for
contact. This brute-force methodology is simple to implement, but causes large
computational requirements as the number of grains increases (O (n2)). This im-
plies that the simulation run time is proportional to the square of the number of
grains. This contact search method is easily improved by considering the grain
indexes and only checking for contacts from a grain i to grains with indexes j < i.
The computational requirements still scale unfavorably as the grain numbers in-
crease, however.

A more efficient approach is to perform spatial discretization, which allows
grains to search for contacts only within their vicinity. This can be done by defining
a radial cut-off distance from each grain center (Fig. 7.1b), where the search radius
(rs) is equal to the diameter of the largest grain (max(r)) in addition to an extra
length (s), i.e. rs = s+max(r). Each grain initially saves a list of grains with center
coordinates within this radius. This list can be reused in the following time step,
until the fastest moving grain in the entire domain has traversed a spatial distance
of s. Once this happens, the neighbor lists are rebuilt. This approach is unfavorable
for implementation on GPUs, since determining the single largest value from many
numbers is a slow reduction-type operation.

An alternative approach is to subdivide the simulation domain into a coarse grid
of orthogonal cells (Fig. 7.1c). Each grain belongs to a single cell containing its
center, and checks for contacts with grains in the adjacent cells. This methodology
reduces the contact search complexity to the order of O (n log n) and is used in my
implementation.

7.4 Temporal integration

All soft-body DEMs require explicit temporal integration of the kinematic degrees
of freedom. Applied integration schemes fall in three categories: One-step meth-
ods, multi-step methods, and predictor-corrector methods (Kruggel-Emden et al.,
2008). The simplest integration scheme is the one-step Euler method, which is
equivalent to the first-order Taylor expansion:

ẋ t+∆t = ẋ t + ẍ t∆t (7.14)
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7. DEM modeling: Methodology and example

x t+∆t = x t + ẋ t∆t (7.15)

where ẋ and x are the velocity and position of the grain, respectively. The solution
precision is vastly improved by using the second-order Taylor expansion,

ẋ t+∆t = ẋ t + ẍ t∆t (7.16)

x t+∆t = x t + ẋ t∆t +
1
2

ẍ t∆t2 (7.17)

or the three-term Taylor expansion:

ẋ t+∆t = ẋ t + ẍ t∆t +
1
2

...
x t∆t2 (7.18)

x t+∆t = x t + ẋ t∆t +
1
2

ẍ t∆t2 +
1
6

...
x t∆t3 (7.19)

...
x is the temporal gradient of acceleration. The three-term Taylor expansion offers
an optimal trade-off between solution precision and complexity, and is used in the
experiments presented in this thesis. For a review of DEM temporal integration
schemes the reader is referred to (Kruggel-Emden et al., 2008).

7.5 Practical example

The soft-body DEM is relatively straight forward to implement, due to it’s explicit
temporal integration scheme. The following code snippets demonstrate a simple
program where round and non-rotating 3d grains are interacting and are pulled
downwards due to gravity.

The grains are interacting with a simple contact law which doesn’t depend
on history of the contact. The normal force from grain contacts is linear elastic
(Eq. 7.5), while the tangential force is viscous (Eq. 7.10).

The code examples are written resembling an object-oriented Python-style syn-
tax. The kinematic and geometric properties of a single grain are saved in an class
called Grain (lst. 7.1). Two objects of the Grain class interact in the class Grain-
GrainInteraction (lst. 7.2), which resolves the forces the resulting forces on
the Grain objects.

An example simulation is setup in code snippet lst. 7.3. First off the geometrical
and physical simulation parameters are defined. Afterwards, Grain objects are
created at various positions, and a suitable time step is chosen. Finally the script
enters a time loop, where inter-grain contacts are found and resolved and temporal
integration updates the position, velocity, and acceleration of all grains.

The example uses an all-to-all contact search algorithm with O (n2) complexity,
where all grains check for contacts with all other grains. This implies that the
computational requirements (i.e. run time) scales with the square of the number
of grains, making it rather unfavorable for many-body simulations.
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7.5. Practical example

1 class Grain:
2 # A per-grain class containing individual parameters and
3 # functions for each grain.
4

5 def __init__(self,
6 pos=[0., 0., 0.,],
7 vel=[0., 0., 0.,],
8 acc=[0., 0., 0.,],
9 force=[0., 0., 0.,],

10 radius=1.,
11 density=2600.):
12 # Initializing function with modifyable default values
13 # :param pos: Grain linear position [m]
14 # :param vel: Grain linear velocity [m/s]
15 # :param acc: Grain linear acceleration [m/s^2]
16 # :param force: Sum of forces [N]
17 # :param radius: Grain radius [m]
18 # :param density: Grain density [kg/m^3]
19 self.pos = pos
20 self.vel = vel
21 self.acc = acc
22 self.force = force
23 self.radius = radius
24 self.density = density
25

26 def mass(self):
27 # Returns the grain mass
28 return self.density*4./3.*pi*self.radius**3
29

30 def updateKinematics(self, dt):
31 # Use temporal integration to project the grain
32 # kinematics a length of time into the future.
33 # Uses a two-term Taylor expansion.
34 # :param dt: Time step length [s]
35 self.acc = self.F/self.mass()
36 vel_new = self.vel + self.acc*dt
37 pos_new = self.pos + self.vel*dt + \
38 1./2.*self.acc*dt**2
39 self.pos = pos_new
40 self.vel = vel_new

Listing 7.1. grain.py: A simple example grain class for non-
rotating grains.
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1 class GrainGrainInteraction:
2 # A class for resolving the interaction between two grains.
3 # The contact is elastic in the normal direction and viscous
4 # in the tangential direction of the contact.
5

6 def __init__(self, p_i, p_j, k_n=1.e9, gamma_t=1.e6, mu=0.5):
7 # Initialization function
8 # :param p_i: First grain object
9 # :param p_j: Second grain object

10 # :param k_n: Contact stiffness [N/m]
11 # :param gamma_t: Contact viscosity [N/(m/s)]
12 # :param mu: Contact friction coefficient [-]
13 self.p_i = p_i
14 self.p_j = p_j
15 self.k_n = k_n
16 self.gamma_t = gamma_t
17 self.mu = mu
18

19 def interGrainVector(self):
20 # Returns the inter-grain position vector
21 # :returns: x_ij [m]
22 return p_j.pos - p_i.pos
23

24 def overlap(self):
25 # Determine the grain overlap (overlap when negative)
26 # :returns: delta_n [m]
27 return abs(self.interGrainVector())\
28 - (p_i.radius + p_j.radius)
29

30 def contactParallelVelocity(self):
31 # Determines the shear velocity on the contact surface due
32 # to relative grain movement
33 return p_i.vel - p_j.vel
34

35 def normalVector(self):
36 # Contact-normal vector
37 # :returns: n [m]
38 x_ij = self.interGrainVector()
39 return x_ij/magn(x_ij)
40

41 def normalForce(self):
42 # Contact-normal force on grain i (opposite on grain j)
43 return -self.k_n*self.overlap()*self.normalVector()
44

45 def tangentialForce(self):
46 # Contact-parallel force on grain i (opposite on grain j)
47 return self.gamma_t*self.contactParallelVelocity()
48

49 def interact(self):
50 # Resolve contact interaction and forces on both grains
51 f_n = self.normalForce()
52 f_t = self.tangentialForce()
53

54 # limit tangential force to Coulomb criterion
55 if (magn(f_n)*mu < magn(f_t)):
56 f_t = magn(f_n)*mu*f_t/magn(f_t)
57

58 # Save resulting forces to the grains
59 p_i.force += f_n + f_t
60 p_j.force -= f_n + f_t

Listing 7.2. interaction.py: A grain interaction class with a
simple contact model.
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7.5. Practical example

1 #!/usr/bin/env python
2 from grain import * # grain.py
3 from interaction import * # interaction.py
4

5 ## Simulation parameters
6 t = 0. # time at start
7 t_total = 5. # simulation duration
8 grains = [] # Array of grains
9 g = 9.81 # Gravitational acceleration [m/s^2]

10

11 ## Initialization
12 # Create and initialize grains (abbreviated)
13 for i in range(100):
14 grains.append(Grain(pos, vel, acc, radius, density))
15

16 # Select suitable time step length
17 dt = 0.07/sqrt(1.e9/min(grains.m))
18

19 ## Simulation main loop
20 while t < t_total:
21

22 # Find grain-grain contacts
23 contacts = [] # Empty array of grain contacts
24 for i in range(len(grains)):
25 for j in range(len(grains)):
26 if i < j:
27 contact = GrainGrainInteraction(i, j)
28 if contact.overlap() < 0.:
29 contacts.append(contact)
30

31 # Resolve forces from grain-grain contacts
32 for contact in contacts:
33 contact.interact()
34

35 # Add gravitational acceleration
36 for grain in grains:
37 grain.acc += [0., 0., -g]
38

39 # Update grain kinematic degrees of freedom
40 for grain in grains:
41 grain = updateKinematics()
42

43 t += dt

Listing 7.3. simulation.py: An example simulation where
grains in a box interact.
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Chapter8
Research note 2:

Porous �ow modeling:
Fluid description and
solution methodology

This chapter is intended to expand on the fundamental design choices and imple-
mentation details for the fluid phase numerical model used for this thesis.

The full source code used for the simulations in this thesis is available at
https://github.com/anders-dc/sphere.
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8. Porous flow modeling: Fluid description and implementation

8.1 Introduction

The mathematical description of fluid flows relies on principal conservation laws
like conservation of mass, momentum and energy, and is often summarized as
the Navier-Stokes (NS) equations (e.g. Griebel et al., 1998). Analytical solutions
to the NS equations have been used to solve fluid dynamics for simple problems,
while various numerical approaches are more applicable for slightly more complex
settings. Notable numerical methodologies range from the Lagrangian smoothed-
particle hydrodynamics (SPH) method, where fluid behavior is considered the
product of the collective behavior of water “particles”. This method is particu-
lar popular for free-surface simulations such as dam breaches or wave action. The
Lattice Boltzmann method (LBM) is a mixed Eulerian-Lagrangian approach where
a finite number of fluid particles is transported between a static grid, especially
powerful for resolving single or multiphase flow in complex geometries. Eule-
rian methods, such as the finite difference method (FDM), finite volume method
(FVM), and the finite element method (FEM), are the most commonly used meth-
ods of CFD.

For the solution of pore-fluid flow in granular materials, a fast method for solv-
ing locally averaged fluid behavior is preferable over solutions of flow in the exact
geometry of the pores. The reasoning is two-fold: (i) Adequately accurate geome-
tries of three-dimensional pores require on the order of 100s to 1000s of fluid cells
per particle, which far exceed the computational resources at hand, and (ii) the
grain shapes used with the DEM are highly simplified where real materials are
more angular. Perfectly resolving pore geometry is not yielding a more realistic
behavior relative to deformation of real saturated granular media.

The following strategies rely on locally averaged material and flow properties,
such as porosity and flow velocity (Anderson and Jackson, 1967). I describe the
governing equations, the implementation, and applicability of two kinds of de-
scription of porous flow in granular media that have been developed and used for
the studies in this PhD project.

8.2 Inertial pore-fluid flow

The following formulation treats the inter-particle fluid as an inertial fluid, involv-
ing both diffusion and advection. Mass is conserved in a control volume located
inside the fluid if

∂ ρf

∂ t
+∇ · v f = 0 (8.1)

ρf is the fluid density and v f is the fluid velocity. Fluids like water are often con-
sidered incompressible in numerical implementations, which implies that the fluid
density is constant. This assumption reduces the continuity equation to:

∇ · v f = 0 (8.2)

The momentum equation in the NS equations is derived from the Cauchy momen-
tum equation:

ρf
∂ v f

∂ t
+ρf(v f · ∇v f) =∇ ·σ +ρfg (8.3)
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8.2. Inertial pore-fluid flow

Here, σ is the Cauchy stress tensor and g is the gravitational acceleration. For
incompressible Newtonian fluids the Cauchy stress tensor is given by:

σ = −pfI +τ (8.4)

pf is the fluid pressure, I is the identity tensor, and τ is the deviatoric stress tensor,
for Newtonian fluids given by:

τ = µf∇v f +µf(∇v f)
T (8.5)

By using the following vector identities for a vector (v f) and a scalar field (pf)
(Spiegel et al., 1968):

∇ · (pI) =∇pf (8.6)

∇ · (∇v f) =∇2v f (8.7)

∇ · (∇v f)
T =∇(∇ · v f) =∇(0) = 0 (8.8)

the Cauchy stress tensor simplifies the following, assuming that spatial variations
in viscosity can be neglected:

∇ ·σ = −∇pf +µf∇2v f (8.9)

The transpose term in Eq. 8.8 equals zero due to the incompressible continuity
equation (Eq. 8.2).

For the coupled particle-fluid simulations in this thesis, the fluid behavior is
spatially averaged over two-phase volumes that can contain both the solid and
fluid phase (Zhou et al., 2010). The incompressible mass conservation equation is
modified to contain porosity φ:

∂ φ

∂ t
+∇ · (φv f) = 0 (8.10)

There are different ways of including porosity and grain-fluid interaction forces
(F i) in the momentum equation. The most favorable form (set 2 in Zhou et al.
(2010), model A in Zhu et al. (2007)) is:

∂ (φv f)
∂ t

+∇ · (φv f ⊗ v f) = −
φ

ρf
∇pf −

1
ρf

F i +
φ

ρf
∇ ·τ+φg (8.11)

where τ is the deviatoric part of the fluid stress tensor from before. The⊗ operator
denotes dyadic multiplication of vectors yielding a tensor product.

Numerical solution procedure

The solution procedure uses the operator splitting methodology presented in Lang-
tangen et al. (2002), which is modified for the two-phase NS formulation. First,
velocities at t +∆t are predicted (v∗f ) by explicit temporal integration of the mo-
mentum equation (Eq. 8.11), based on the fluid state at time t:

v∗f = v f
t−βφ

t∆t
ρf

∇pf
t− ∆t
ρfφ t

F i
t+
∆t
ρf
∇·τt+∆tg−∆φ

t v f
t

φ t
−∆t
φ t
∇·(φ t v f

t⊗v f
t)

(8.12)
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β ∈ [0; 1] is a dimensionless fluid solver parameter. The true velocity at time t+∆t
is dependent on the unknown fluid pressure at t +∆t. The predicted velocity is
not guaranteed to satisfy the continuity equation (Eq. 8.10). The true fluid velocity
can be found by adding an unknown correction term v f

c to the predicted value:

v f
t+∆t = v f

∗ + v f
c ⇒ v f

c = v f
t+∆t − v f

∗ (8.13)

v f
c = −∆t

ρf
∇pf

t+∆t +
β∆t
ρf
∇pf

t = −∆t
ρf
∇(pf

t+∆t − βpf
t+∆t) (8.14)

By defining a corrective term (ε ≡ pf
t+∆t − βpf

t+∆t) a simpler expression of the
velocity prediction correction emerges:

v f
t+∆t = v f

∗ − ∆t
ρf
∇ε (8.15)

The above expression for the fluid velocity at t +∆t is inserted in the continuity
equation (Eq. 8.10):

∂ φ

∂ t
+∇ · (φv f

t+∆t) =
∂ φ

∂ t
+∇φ · v f

t+∆t +φ∇ · v f
t+∆t = 0 (8.16)

Afterwards, Eq. 8.15 is inserted as the velocity at t +∆t:

∆φ

∆t
+∇φ ·

�

v f
∗ − ∆t

ρf
∇ε
�

+φ∇ ·
�

v f
∗ − ∆t

ρf
∇ε
�

= 0 (8.17)

∆φ

∆t
+∇φ · v f

∗ − ∆t
ρf
∇φ · ∇ε+φ∇ · v f

∗ − ∆t
ρf
φ∇2ε= 0 (8.18)

The above equation is rearranged into the form of a Poisson equation (∇2Φ = f ),
with a composite forcing function f (right-hand side):

∇2ε=
∆φρf

∆t2φ
+
ρf∇φ · v f

∗

∆tφ
− ∇φ · ∇ε

φ
+
ρf∇ · v f

∗

∆t
(8.19)

Using second-order FDM approximations of the second-order partial derivatives
in the Laplace operator (∇2), the solution to the Poisson equation can be solved
iteratively using Jacobi updates. The total number of unknowns is (nx − 1)(ny −
1)(nz − 1), where nd denotes the number of grid cells along dimension d.

The discrete Laplacian1 can be obtained by a finite-difference seven-point sten-
cil in a three-dimensional cubic grid with cell spacing ∆x , ∆y , ∆z by considering
the six neighboring cells adjacent to the cell faces. id denotes the cell index along
dimension d:

∇2εix ,iy ,iz ≈
εix−1,iy ,iz − 2εix ,iy ,iz + εix+1,iy ,iz

∆x2

+
εix ,iy−1,iz − 2εix ,iy ,iz + εix ,iy+1,iz

∆y2

+
εix ,iy ,iz−1 − 2εix ,iy ,iz + εix ,iy ,iz+1

∆z2
≈ fix ,iy ,iz

(8.20)

1Approximation of the Laplace operator
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8.2. Inertial pore-fluid flow

Within a Jacobi iteration, the value of the unknowns (εn) is used to find an updated
solution estimate (εn+1). The solution for the updated value takes the form:

εn+1
ix ,iy ,iz

=
−∆x2∆y2∆z2 fix ,iy ,iz

2(∆x2∆y2 +∆x2∆z2 +∆y2∆z2)

+
∆y2∆z2(εn

ix−1,iy ,iz
+ εn

ix+1,iy ,iz
)

2(∆x2∆y2 +∆x2∆z2 +∆y2∆z2)

+
∆x2∆z2(εn

ix ,iy−1,iz
+ εn

ix ,iy+1,iz
)

2(∆x2∆y2 +∆x2∆z2 +∆y2∆z2)

+
∆x2∆y2(εn

ix ,iy ,iz−1 + ε
n
ix ,iy ,iz+1)

2(∆x2∆y2 +∆x2∆z2 +∆y2∆z2)

(8.21)

The difference between the current and updated value is termed the normalized
residual:

rix ,iy ,iz =
(εn+1

ix ,iy ,iz
− εn

ix ,iy ,iz
)2

(εn+1
ix ,iy ,iz

)2
(8.22)

The updated values are at the end of the iteration stored as the current values,
and the maximal value of the normalized residual is found. If this value is larger
than a specified tolerance criteria, the update procedure is repeated. The iterative
procedure is ended if the number of iterations exceeds a defined limit, should the
solution not converge. After the values of ε are found, they are used to find the
new velocities (Eq. 8.15) and pressures:

pf
t+∆t = βpf

t + ε (8.23)

Solid-fluid interaction

The particle-fluid momentum exchange follows the procedure outlined by Xu and
Yu (1997), Feng and Yu (2004) and Zhou et al. (2010) (scheme 3). At each time
step, the particle–fluid interaction forces on individual particles in each fluid cell
are determined ( f i)), and the values are summed to produce the particle–fluid
interaction force per fluid volume on the fluid (F i).

The interaction force imposed onto the particles is composed of the drag force
( f d), the pressure gradient force ( f ∇p) and the viscous force ( f ∇·τ). For a particle
with index i, the interaction force is:

f i = f d,i + f ∇pf,i + f ∇·τ,i (8.24)

The particle-fluid interaction force f i is added to the sum of linear forces per par-
ticle (Eq. 3 in Damsgaard et al. (2013)). The drag force acts with opposite signs
on the fluid. The interaction force for a fluid cell with volume ∆V containing n
particles is found as:

F i =
1
∆V

n
∑

i=1

f d,i (8.25)

The pressure gradient force and viscous force is applied to the fluid through the
other terms in the momentum equation (Eq. 8.11) (Zhou et al., 2010).
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8. Porous flow modeling: Fluid description and implementation

The drag force is determined by semi-empirical relationships (Ergun, 1952;
Wen and Yu, 1966; Gidaspow et al., 1992; Di Felice, 1994). The force magnitude
scales linearly with the relative velocity difference between particle and fluid:

f d = 0.125Cd0,iρ f π2r2
i φ

2||v f − vp||(v f − vp)φ
−χ (8.26)

where ri is the radius and vp is the linear velocity of particle i. The drag coefficient
for a spherical particle is:

Cd0,i =

�

0.63+
4.8

Re0.5
i

�2

(8.27)

The empirical coefficient χ is found as:

χ = 3.7− 0.65 exp

�

−1.5− (log10 Rei)2

2

�

(8.28)

The particle Reynolds number is defined by:

Rei = ρf2riφ||v f − vp||/µf (8.29)

The pressure gradient force is calculated as:

f ∇pf
= −∇pfVp (8.30)

where Vp is the volume of the particle. Note that the pressure force includes buoy-
ancy. The viscous force is defined as:

f ∇·τ = −(∇ ·τ)Vp (8.31)

Implementation and applicability

The soft-body DEM interactions require very short time steps in order to ensure nu-
merical stability. It is common to use CFD time steps which are between one and
three magnitudes longer than the DEM time step, which still produces identical re-
sults and increases computational performance (Shamy and Zeghal, 2005; Kloss et
al., 2012; Zhao and Shan, 2013). I found the optimal ratio between∆tCFD/∆tDEM
to be around 10.

The simulation domain is discretized in a regular rectiliniear orthogonal stag-
gered grid (C-type in (Arakawa and Lamb, 1977). The numerical solution is contin-
uously checked for stability by von Neumann analysis and the CFL condition. The
Navier-Stokes based CFD algorithm is implemented in CUDA C (NVIDIA, 2013b),
which allows direct memory access to the DEM information. I found that the
fluid solution procedure works most efficiently when the solver parameter β is 0,
which corresponds to the Chorin projection method (Chorin, 1968; Temam, 1969;
Griebel et al., 1998; Langtangen et al., 2002).

When I started using the above coupled algorithm between grains and a full
Navier-Stokes fluid solution, it became apparent that the formulation was very
applicable for relatively fast fluid flows, owing to its completeness and precise so-
lution on the staggered grid, and due to its inclusion of several types of grain-fluid
interaction forces. The method proved not optimal, however, for simulating gran-
ular materials with lower permeabilities and consequential slow fluid velocities.
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8.3. Inertialess pore-fluid flow

The governing equations (Eq. 8.10 and 8.11) provide no simple method of adjust-
ing hydraulic properties such as permeability, and ad-hoc tuning of permeability
by scaling fluid velocities proved to decrease solver performance drastically.

I decided to try a different fluid formulation based on Darcian flow, which
assumes fluid flow is taking place at negligible velocities (Stokes flow), and allows
for explicit definition of the magnitude of permeability.

8.3 Inertialess pore-fluid flow

In this formulation the inertial forces in the fluid are assumed to be negligible
with respect to viscous resistance (Gerya, 2010), which is true for slowly flowing
water in aquifers. Advection is negligible, and diffusion is the sole mechanism
for transport. The governing pore-fluid equation is derived from the equations
of conservation of mass for a two-phase mixture of compressible solid and fluid
phases (McNamara et al., 2000; Goren et al., 2010; Goren et al., 2011):

Solid:
∂ (1−φ)ρ
∆t

+∇ · �(1−φ)ρ ¯̇x
�

= 0 (8.32)

Fluid:
∂ φρf

∆t
+∇ · [φρfv f] = 0 (8.33)

where ¯̇x is the locally averaged solid phase (grain) velocity and ρ is the solid phase
density. For conservation of momentum, Darcy’s law is derived from Stokes law of
slow flow:

φ(v f − ẋ ) = − k
µf
∇pf (8.34)

k is the intrinsic permeability and µf is the fluid density. pf is the fluid pres-
sure. The above relation states that velocity differences between the solid and
fluid phase take place proportionally to the negative value of the fluid-pressure
gradient, scaled by permeability and fluid viscosity.

The fluid density can be modified by elastic deformation due to pressure, scaled
by the fluid adiabatic compressibility βf:

ρf = ρ0(1+ βfpf) (8.35)

Goren et al. (2010) assumes that the solid phase is relatively incompressible rel-
ative to the otherwise stiff fluid fluid, which, which is reasonable in the case of
e.g. quartz grains submerged in water. Goren et al. (2011) also assumes that the
length scale of pore pressure diffusion exceeds the diameter of a single grain. To-
gether with these assumptions, equations 8.32 to 8.35 can be combined to a single
equation of pore-pressure diffusion of a compressible fluid, flowing according to
Darcy’s law:

∂ pf

∂ t
=

1
βfφµf

∇ · (k∇pf) +
1
βfφ
∇ · ¯̇x (8.36)

The above equation describes transient evolution ∂ /(∂ t) of pore-water pressure pf
as the sum of spatial diffusion (first term on the right-hand side) and forcing from
the solid phase (second term on the right hand side). The divergence of average
solid velocity (∇ · ¯̇x ) is negative when grains move away from each other, while a
confluence of solids makes the term positive.
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8. Porous flow modeling: Fluid description and implementation

During implementation of the above equation, I found that stability was im-
proved by using a forcing term from the solid phase with information from several
time steps. This was achieved by forcing the fluid with porosity change (Goren
et al., 2011) instead of the divergence of fluids which only considers current grain
velocities. The forcing term is corrected for advection of porosities:

∂ pf

∂ t
=

1
βfφµf

∇ · (k∇pf) +
1

βf(1−φ)
�

∂ φ

∂ t
+ ¯̇x · ∇φ

�

(8.37)

The solid-fluid interaction for this fluid formulation is based on pore-pressure gra-
dient forces, and presented in chapter 5.

Numerical solution procedure

The fluid pressure (pf) are the only unknowns in the system of equations. The
spatial discretization is a rectilinear orthogonal non-staggered grid with fluid pres-
sure, the gradient of fluid pressure (∇pf), porosity (φ), permeability (k) and mean
particle velocity (x̄ ) located at the cell center.

At the beginning of each time step, a pore-pressure change is found using an
explicit solution to the pore-pressure equation (Eq. 8.37):

∆pf
expl =

∆t
βfφµf

�

k∇2pf +∇k · ∇pf

�− ∆t
βfφ(1−φ)

�

∆φ

∆t
+ ¯̇x · ∇φ

�

(8.38)

The fluid pressure gradient is for the cell (i, j, k) approximated by first-order cen-
tral differences using the adjacent cell fluid pressures:

∇pf
i, j,k ≈

�

pf
i+1, j,k − pf

i−1, j,k

2∆x
,

pf
i, j+1,k − pf

i, j−1,k

2∆y
,

pf
i, j,k+1 − pf

i, j,k−1

2∆z

�

(8.39)

The porosity and permeability gradients (∇k and∇φ) are found in the same man-
ner. The Laplacian of fluid pressure (∇2pf) is approximated by second-order cen-
tral differences:

∇2pf
i, j,k ≈ pf

i+1, j,k − 2pf
i, j,k + pf

i−1, j,k

∆x2
+

pf
i, j+1,k − 2pf

i, j,k + pf
i, j−1,k

∆y2
+

pf
i, j,k+1 − 2pf

i, j,k + pf
i, j,k−1

∆z2

(8.40)

At Dirchlet (fixed pressure) boundaries, the change in fluid pressure is defined
to be 0. At Neumann (fixed pressure gradient) boundaries, the grid is padded
with cells with fluid pressures adjusting to satisfying the gradient value. Periodic
boundaries are padded with cells that duplicate the field values at the cells at the
opposite boundaries.

Once the explicit-solution change in fluid pressure has been determined, the
algorithm enters an iterative loop, where the implicit solution to the fluid-pressure
equation change (∆pf

impl) is found by repeatedly computing the solution to equa-
tion 8.38 until the solution converges. The new fluid pressure is found from the
explicit and implicit solutions:

pf
t+∆t = pf

t + (1− ε)∆pf
expl + ε∆pf

impl (8.41)
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8.3. Inertialess pore-fluid flow

where ε ∈ [0;1] is used to select the integration method. A value of 0 denotes a
fully explicit solution, and 1 yields an implicit solution. I used a value of 1

2 which
gives the Crank-Nicolson method, which is unconditionally stable and second-
order precise.

The GPU implementation of the solution procedure turned out to be highly ef-
ficient, which allowed the simulations to be performed with fluid-pressure updates
for each DEM time step, effectively avoiding potential temporal resolution issues.
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